Balance wheel

Last updated
Balance wheel in mantel clock. The spiral balance spring is visible at top. Floating Balance Escapement.gif
Balance wheel in mantel clock. The spiral balance spring is visible at top.
Balance wheel in a 1950s alarm clock, the Apollo, by Lux Mfg. Co. showing the balance spring (1) and regulator (2) Alarm Clock Balance Wheel.jpg
Balance wheel in a 1950s alarm clock, the Apollo, by Lux Mfg. Co. showing the balance spring (1) and regulator (2)
Modern balance wheel in a watch movement Chinese movement escapement and jewels.jpg
Modern balance wheel in a watch movement

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel (called a "tick" or "beat") allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present. From its invention in the 14th century until tuning fork and quartz movements became available in the 1960s, virtually every portable timekeeping device used some form of balance wheel.

Contents

Overview

Until the 1980s balance wheels were the timekeeping technology used in chronometers, bank vault time locks, time fuzes for munitions, alarm clocks, kitchen timers and stopwatches, but quartz technology has taken over these applications, and the main remaining use is in quality mechanical watches.

Modern (2007) watch balance wheels are usually made of Glucydur, a low thermal expansion alloy of beryllium, copper and iron, with springs of a low thermal coefficient of elasticity alloy such as Nivarox. [1] The two alloys are matched so their residual temperature responses cancel out, resulting in even lower temperature error. The wheels are smooth, to reduce air friction, and the pivots are supported on precision jewel bearings. Older balance wheels used weight screws around the rim to adjust the poise (balance), but modern wheels are computer-poised at the factory, using a laser to burn a precise pit in the rim to make them balanced. [2] Balance wheels rotate about 1½ turns with each swing, that is, about 270° to each side of their center equilibrium position. The rate of the balance wheel is adjusted with the regulator, a lever with a narrow slit on the end through which the balance spring passes. This holds the part of the spring behind the slit stationary. Moving the lever slides the slit up and down the balance spring, changing its effective length, and thus the resonant vibration rate of the balance. Since the regulator interferes with the spring's action, chronometers and some precision watches have ‘free sprung’ balances with no regulator, such as the Gyromax. [1] Their rate is adjusted by weight screws on the balance rim.

A balance's vibration rate is traditionally measured in beats (ticks) per hour, or BPH, although beats per second and Hz are also used. The length of a beat is one swing of the balance wheel, between reversals of direction, so there are two beats in a complete cycle. Balances in precision watches are designed with faster beats, because they are less affected by motions of the wrist. [3] Alarm clocks and kitchen timers often have a rate of 4 beats per second (14,400 BPH). Watches made prior to the 1970s usually had a rate of 5 beats per second (18,000 BPH). Current watches have rates of 6 (21,600 BPH), 8 (28,800 BPH) and a few have 10 beats per second (36,000 BPH). Audemars Piguet currently produces a watch with a very high balance vibration rate of 12 beats/s (43,200 BPH). [4] During World War II, Elgin produced a very precise stopwatch for US Air Force bomber crews that ran at 40 beats per second (144,000 BPH), earning it the nickname 'Jitterbug'. [5]

The precision of the best balance wheel watches on the wrist is around a few seconds per day. The most accurate balance wheel timepieces made were marine chronometers, which were used on ships for celestial navigation, as a precise time source to determine longitude. By World War II they had achieved accuracies of 0.1 second per day. [6]

Period of oscillation

A balance wheel's period of oscillation T in seconds, the time required for one complete cycle (two beats), is determined by the wheel's moment of inertia I in kilogram-meter2 and the stiffness (spring constant) of its balance spring κ in newton-meters per radian:

Foliot (horizontal bar with weights) from De Vick clock, built 1379, Paris Verge and foliot from De Vick's clock.svg
Foliot (horizontal bar with weights) from De Vick clock, built 1379, Paris

History

Perhaps the earliest existing drawing of a balance wheel, in Giovanni de Dondi's astronomical clock, built 1364, Padua, Italy. The balance wheel (crown shape, top) had a beat of 2 seconds. Tracing of an illustration from his 1364 clock treatise, Il Tractatus Astrarii. Giovanni Di Dondi clock .png
Perhaps the earliest existing drawing of a balance wheel, in Giovanni de Dondi's astronomical clock, built 1364, Padua, Italy. The balance wheel (crown shape, top) had a beat of 2 seconds. Tracing of an illustration from his 1364 clock treatise, Il Tractatus Astrarii.

The balance wheel appeared with the first mechanical clocks, in 14th century Europe, but it seems unknown exactly when or where it was first used. It is an improved version of the foliot, an early inertial timekeeper consisting of a straight bar pivoted in the center with weights on the ends, which oscillates back and forth. The foliot weights could be slid in or out on the bar, to adjust the rate of the clock. The first clocks in northern Europe used foliots, while those in southern Europe used balance wheels. [7] As clocks were made smaller, first as bracket clocks and lantern clocks and then as the first large watches after 1500, balance wheels began to be used in place of foliots. [8] Since more of its weight is located on the rim away from the axis, a balance wheel could have a larger moment of inertia than a foliot of the same size, and keep better time. The wheel shape also had less air resistance, and its geometry partly compensated for thermal expansion error due to temperature changes. [9]

Addition of balance spring

Early balance wheel with spring in an 18th-century French watch Balance Wheel in Early Watch Berthoud.png
Early balance wheel with spring in an 18th-century French watch

These early balance wheels were crude timekeepers because they lacked the other essential element: the balance spring. Early balance wheels were pushed in one direction by the escapement until the verge flag that was in contact with a tooth on the escape wheel slipped past the tip of the tooth ("escaped") and the action of the escapement reversed, pushing the wheel back the other way. In such an "inertial" wheel, the acceleration is proportional to the drive force. In a clock or watch without balance spring, the drive force provides both the force that accelerates the wheel and also the force that slows it down and reverses it. If the drive force is increased, both acceleration and deceleration are increased, this results in the wheel getting pushed back and forth faster. This made the timekeeping strongly dependent on the force applied by the escapement. In a watch the drive force provided by the mainspring, applied to the escapement through the timepiece's gear train, declined during the watch's running period as the mainspring unwound. Without some means of equalizing the drive force, the watch slowed down during the running period between windings as the spring lost force, causing it to lose time. This is why all pre-balance spring watches required fusees (or in a few cases stackfreeds) to equalize the force from the mainspring reaching the escapement, to achieve even minimal accuracy. [10] Even with these devices, watches prior to the balance spring were very inaccurate.

The idea of the balance spring was inspired by observations that springy hog bristle curbs, added to limit the rotation of the wheel, increased its accuracy. [11] [12] Robert Hooke first applied a metal spring to the balance in 1658 and Jean de Hautefeuille and Christiaan Huygens improved it to its present spiral form in 1674. [9] [13] [14] The addition of the spring made the balance wheel a harmonic oscillator, the basis of every modern clock. This means the wheel vibrated at a natural resonant frequency or ‘beat’ and resisted changes in its vibration rate caused by friction or changing drive force. This crucial innovation greatly increased the accuracy of watches, from several hours per day [15] to perhaps 10 minutes per day, [16] changing them from expensive novelties into useful timekeepers.

Temperature error

After the balance spring was added, a major remaining source of inaccuracy was the effect of temperature changes. Early watches had balance springs made of plain steel and balances of brass or steel, and the influence of temperature on these noticeably affected the rate.

An increase in temperature increases the dimensions of the balance spring and the balance due to thermal expansion. The strength of a spring, the restoring force it produces in response to a deflection, is proportional to its breadth and the cube of its thickness, and inversely proportional to its length. An increase in temperature would actually make a spring stronger if it affected only its physical dimensions. However, a much larger effect in a balance spring made of plain steel is that the elasticity of the spring's metal decreases significantly as the temperature increases, the net effect being that a plain steel spring becomes weaker with increasing temperature. An increase in temperature also increases diameter of a steel or brass balance wheel, increasing its rotational inertia, its moment of inertia, making it harder for the balance spring to accelerate. The two effects of increasing temperature on physical dimensions of the spring and the balance, the strengthening of the balance spring and the increase in rotational inertia of the balance, have opposing effects and to an extent cancel each other. [17] The major effect of temperature which affects the rate of a watch is the weakening of the balance spring with increasing temperature.

In a watch that is not compensated for the effects of temperature, the weaker spring takes longer to return the balance wheel back toward the center, so the ‘beat’ gets slower and the watch loses time. Ferdinand Berthoud found in 1773 that an ordinary brass balance and steel hairspring, subjected to a 60 °F (33 °C) temperature increase, loses 393 seconds (6+12 minutes) per day, of which 312 seconds is due to spring elasticity decrease. [18]

Temperature-compensated balance wheel

Bimetallic temperature-compensated balance wheel, from an early 1900s pocket watch. 17 mm dia. (1) Moving opposing pairs of weights closer to the ends of the arms increases temperature compensation. (2) Unscrewing pairs of weights near the spokes slows the oscillation rate. Adjusting a single weight changes the poise, or balance. Pocket Watch Balance Wheel.jpg
Bimetallic temperature-compensated balance wheel, from an early 1900s pocket watch. 17 mm dia. (1) Moving opposing pairs of weights closer to the ends of the arms increases temperature compensation. (2) Unscrewing pairs of weights near the spokes slows the oscillation rate. Adjusting a single weight changes the poise, or balance.

The need for an accurate clock for celestial navigation during sea voyages drove many advances in balance technology in 18th century Britain and France. Even a 1-second per day error in a marine chronometer could result in a 17-mile (27 km) error in ship's position after a 2-month voyage. John Harrison was first to apply temperature compensation to a balance wheel in 1753, using a bimetallic ‘compensation curb’ on the spring, in the first successful marine chronometers, H4 and H5. These achieved an accuracy of a fraction of a second per day, [16] but the compensation curb was not further used because of its complexity.

A simpler solution was devised around 1765 by Pierre Le Roy, and improved by John Arnold, and Thomas Earnshaw: the Earnshaw or compensating balance wheel. [19] The key was to make the balance wheel change size with temperature. If the balance could be made to shrink in diameter as it got warmer, the smaller moment of inertia would compensate for the weakening of the balance spring, keeping the period of oscillation the same.

To accomplish this, the outer rim of the balance was made of a ‘sandwich’ of two metals; a layer of steel on the inside fused to a layer of brass on the outside. Strips of this bimetallic construction bend toward the steel side when they are warmed, because the thermal expansion of brass is greater than steel. The rim was cut open at two points next to the spokes of the wheel, so it resembled an S-shape (see figure) with two circular bimetallic ‘arms’. These wheels are sometimes referred to as "Z-balances". A temperature increase makes the arms bend inward toward the center of the wheel, and the shift of mass inward reduces the moment of inertia of the balance, similar to the way a spinning ice skater can reduce her moment of inertia by pulling in her arms. This reduction in the moment of inertia compensated for the reduced torque produced by the weaker balance spring. The amount of compensation is adjusted by moveable weights on the arms. Marine chronometers with this type of balance had errors of only 3–4 seconds per day over a wide temperature range. [20] By the 1870s compensated balances began to be used in watches.

Middle temperature error

Marine chronometer balance wheels from the mid-1800s, with various 'auxiliary compensation' systems to reduce middle temperature error Early Chronometer Balance Wheels.png
Marine chronometer balance wheels from the mid-1800s, with various 'auxiliary compensation' systems to reduce middle temperature error

The standard Earnshaw compensation balance dramatically reduced error due to temperature variations, but it didn't eliminate it. As first described by J. G. Ulrich, a compensated balance adjusted to keep correct time at a given low and high temperature will be a few seconds per day fast at intermediate temperatures. [21] The reason is that the moment of inertia of the balance varies as the square of the radius of the compensation arms, and thus of the temperature. But the elasticity of the spring varies linearly with temperature.

To mitigate this problem, chronometer makers adopted various 'auxiliary compensation' schemes, which reduced error below 1 second per day. Such schemes consisted for example of small bimetallic arms attached to the inside of the balance wheel. Such compensators could only bend in one direction toward the center of the balance wheel, but bending outward would be blocked by the wheel itself. The blocked movement causes a non-linear temperature response that could slightly better compensate the elasticity changes in the spring. Most of the chronometers that came in first in the annual Greenwich Observatory trials between 1850 and 1914 were auxiliary compensation designs. [22] Auxiliary compensation was never used in watches because of its complexity.

Better materials

Low-temperature-coefficient alloy balance and spring, in an ETA 1280 movement from a Benrus Co. watch made in the 1950s Benrus Watch Balance Wheel 2.jpg
Low-temperature-coefficient alloy balance and spring, in an ETA 1280 movement from a Benrus Co. watch made in the 1950s

The bimetallic compensated balance wheel was made obsolete in the early 20th century by advances in metallurgy. Charles Édouard Guillaume won a Nobel prize for the 1896 invention of Invar, a nickel steel alloy with very low thermal expansion, and Elinvar (from élasticité invariable, 'invariable elasticity') an alloy whose elasticity is unchanged over a wide temperature range, for balance springs. [23] A solid Invar balance with a spring of Elinvar was largely unaffected by temperature, so it replaced the difficult-to-adjust bimetallic balance. This led to a series of improved low temperature coefficient alloys for balances and springs.

Before developing Elinvar, Guillaume also invented an alloy to compensate for middle temperature error in bimetallic balances by endowing it with a negative quadratic temperature coefficient. This alloy, named anibal, is a slight variation of invar. It almost completely negated the temperature effect of the steel hairspring, but still required a bimetal compensated balance wheel, known as a Guillaume balance wheel. This design was mostly fitted in high precision chronometers destined for competition in observatories. The quadratic coefficient is defined by its place in the equation of expansion of a material; [24]

where:

is the length of the sample at some reference temperature
is the temperature above the reference
is the length of the sample at temperature
is the linear coefficient of expansion
is the quadratic coefficient of expansion

Footnotes

  1. 1 2 Odets, Walt (2007). "The Balance Wheel of a Watch". The Horologium. TimeZone.com. Archived from the original on 6 July 2007. Retrieved 2007-06-16.
  2. Odets, Walt (2005). "Balance Wheel Assembly". Glossary of Watch Parts. TimeZone Watch School. Retrieved 2007-06-15.
  3. Arnstein, Walt (2007). "Does faster mean more accurate?, TimeZone.com". Archived from the original on 2007-06-08. Retrieved 2007-06-15.
  4. "Jules Audemars Watch with Audemars Piguet Escapement". Audemars press release. Professional Watches magazine. 19 January 2009. Archived from the original on 2009-12-28. Retrieved 15 October 2020.
  5. Schlitt, Wayne (2002). "The Elgin Collector's Site" . Retrieved 2007-06-20.
  6. "Marine Chronometer". Encyclopædia Britannica online. Encyclopædia Britannica Inc. 2007. Retrieved 2007-06-15.
  7. White, Lynn Jr. (1966). Medieval Technology and Social Change. Oxford Press. ISBN   978-0-19-500266-9., p. 124
  8. Milham, Willis I. (1945). Time and Timekeepers. New York: MacMillan. ISBN   0-7808-0008-7., p. 92
  9. 1 2 Headrick, Michael (April 2002). "Origin and Evolution of the Anchor Clock Escapement". IEEE Control Systems. 22 (2): 41–52. doi:10.1109/37.993314. Archived from the original on 2009-10-25. Retrieved 2007-06-06.
  10. "Brittens Old Clocks & Watches" Edited by Cecil Clutton, G H Baillie & C A Ilbert, Ninth Edition Revised and Enlarged by Cecil Clutton. Bloomsbury Books London 1986 ISBN   0906223695 page 16
  11. Britten, Frederick J. (1898). On the Springing and Adjusting of Watches. New York: Spon & Chamberlain. Retrieved 2008-04-16. p. 9
  12. Brearley, Harry C. (1919). Time Telling through the Ages. New York: Doubleday. Retrieved 2008-04-16. pp. 108–109
  13. Milham 1945, p. 224
  14. Hautefeuille, Jean de (1647-1724) Auteur du texte (1722). Construction nouvelle de trois montres portatives, d'un nouveau balancier en forme de croix,... d'un gnomon spéculaire... et autres curiositez, par M. l'abbé de Haute-Feuille. [Orléans, juin 1722.].{{cite book}}: CS1 maint: numeric names: authors list (link)
  15. Milham 1945, p. 226
  16. 1 2 "A Revolution in Timekeeping". A Walk Through Time. National Institute of Standards and Technology. 2004. Retrieved 2022-10-13.
  17. A.L. Rawlings, Timothy Treffry, The Science of Clocks and Watches, Publisher: BHI, ISBN   0 9509621 3 9, Edition: 1993, 3rd enlarged and revised edition.
  18. Britten 1898, p. 37
  19. Milham 1945, p. 233
  20. Glasgow, David (1885). Watch and Clock Making. London: Cassel & Co. Retrieved 2008-04-16. p. 227
  21. Gould, Rupert T. (1923). The Marine Chronometer. Its History and Development. London: J. D. Potter. ISBN   0-907462-05-7. pp. 176–177
  22. Gould 1923, pp. 265–266
  23. Milham 1945, p. 234
  24. Gould, p. 201.

Related Research Articles

<span class="mw-page-title-main">John Harrison</span> English clockmaker (1693–1776)

John Harrison was an English carpenter and clockmaker who invented the marine chronometer, a long-sought-after device for solving the problem of calculating longitude while at sea.

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

<span class="mw-page-title-main">Bimetallic strip</span> Two-sided strip that coils when heated or cooled

A bimetallic strip is a strip that consists of two strips of different metals which expand at different rates as they are heated. They are used to convert a temperature change into mechanical displacement. The different expansions force the flat strip to bend one way if heated, and in the opposite direction if cooled below its initial temperature. The metal with the higher coefficient of thermal expansion is on the outer side of the curve when the strip is heated and on the inner side when cooled.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">Pocket watch</span> Watch made to be carried in a pocket

A pocket watch is a watch that is made to be carried in a pocket, as opposed to a wristwatch, which is strapped to the wrist.

<span class="mw-page-title-main">Seiko</span> Japanese manufacturing company

Seiko Group Corporation, commonly known as Seiko, is a Japanese maker of watches, clocks, electronic devices, semiconductors, jewelry, and optical products. Founded in 1881 by Kintarō Hattori in Tokyo, Seiko introduced the world's first commercial quartz wristwatch in 1969.

<span class="mw-page-title-main">Mainspring</span> Spiral torsion spring of metal ribbon used as a power source in mechanical watches and clocks

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.

<span class="mw-page-title-main">Verge escapement</span> Early clock mechanism

The vergeescapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were used from the late 13th century until the mid 19th century in clocks and pocketwatches. The name verge comes from the Latin virga, meaning stick or rod.

Elinvar is a nickel–iron–chromium alloy notable for having a modulus of elasticity which does not change much with temperature changes.

<span class="mw-page-title-main">Thomas Earnshaw</span> 18th and 19th-century British watchmaker

Thomas Earnshaw was an English watchmaker who, following John Arnold's earlier work, further simplified the process of marine chronometer production, making them available to the general public. He is also known for his improvements to the transit clock at the Royal Greenwich Observatory in London and his invention of a chronometer escapement and a form of bimetallic compensation balance.

<span class="mw-page-title-main">John Arnold (watchmaker)</span> 18th-century English watchmaker and inventor

John Arnold was an English watchmaker and inventor.

<span class="mw-page-title-main">Fusee (horology)</span> Mainspring force equalizing pulley in timepieces

A fusee is a cone-shaped pulley with a helical groove around it, wound with a cord or chain attached to the mainspring barrel of antique mechanical watches and clocks. It was used from the 15th century to the early 20th century to improve timekeeping by equalizing the uneven pull of the mainspring as it ran down. Gawaine Baillie stated of the fusee, "Perhaps no problem in mechanics has ever been solved so simply and so perfectly."

<span class="mw-page-title-main">Balance spring</span>

A balance spring, or hairspring, is a spring attached to the balance wheel in mechanical timepieces. It causes the balance wheel to oscillate with a resonant frequency when the timepiece is running, which controls the speed at which the wheels of the timepiece turn, thus the rate of movement of the hands. A regulator lever is often fitted, which can be used to alter the free length of the spring and thereby adjust the rate of the timepiece.

<span class="mw-page-title-main">History of watches</span>

The history of watches began in 16th-century Europe, where watches evolved from portable spring-driven clocks, which first appeared in the 15th century.

<span class="mw-page-title-main">Torsion pendulum clock</span> Clock that uses a torsion pendulum to keep time

A torsion pendulum clock, more commonly known as an anniversary clock or 400-day clock, is a mechanical clock which keeps time with a mechanism called a torsion pendulum. This is a weighted disk or wheel, often a decorative wheel with three or four chrome balls on ornate spokes, suspended by a thin wire or ribbon called a torsion spring. The torsion pendulum rotates about the vertical axis of the wire, twisting it, instead of swinging like an ordinary pendulum. The force of the twisting torsion spring reverses the direction of rotation, so the torsion pendulum oscillates slowly, clockwise and counterclockwise. The clock's gears apply a pulse of torque to the top of the torsion spring with each rotation to keep the wheel going. The Atmos Clock made by the Swiss company Jaeger-LeCoultre is another style of this clock. The wheel and torsion spring function similarly to a watch's balance wheel and hairspring, as a harmonic oscillator to control the rate of the clock's hands.

<span class="mw-page-title-main">Mechanical watch</span> Type of watch which uses a clockwork mechanism to measure the passage of time

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

<span class="mw-page-title-main">Marine chronometer</span> Clock used on ships to aid in navigation

A marine chronometer is a precision timepiece that is carried on a ship and employed in the determination of the ship's position by celestial navigation. It is used to determine longitude by comparing Greenwich Mean Time (GMT), and the time at the current location found from observations of celestial bodies. When first developed in the 18th century, it was a major technical achievement, as accurate knowledge of the time over a long sea voyage was vital for effective navigation, lacking electronic or communications aids. The first true chronometer was the life work of one man, John Harrison, spanning 31 years of persistent experimentation and testing that revolutionized naval navigation.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.

<span class="mw-page-title-main">Pierre Le Roy</span> 18th-century French clockmaker

Pierre Le Roy (1717–1785) was a French clockmaker. He was the inventor of the detent escapement, the temperature-compensated balance and the isochronous balance spring. His developments are considered as the foundation of the modern precision clock. Le Roy was born in Paris, eldest son of Julien Le Roy, a clockmaker to Louis XV who had worked with Henry Sully, in which place Pierre Le Roy succeeded his father. He had three brothers: Jean-Baptiste Le Roy (1720-1800), a physicist; Julien-David Le Roy (1724–1803), an architect; and Charles Le Roy (1726–1779), a physician and encyclopédiste.

The échappement naturel was the invention of Abraham-Louis Breguet, one of the most eminent watchmakers of all time. Following the introduction of the detent chronometer escapement with a temperature compensated balance, very close rates could be achieved in marine chronometers and to a lesser degree in pocket chronometers. This achievement was due, other things being equal, to the minimal interference with the balance during unlocking and impulse. A further key advantage of this escapement was that there was no need for oil on the escapement's working surfaces and hence no deterioration in the friction between the working surfaces as the oil aged. A drawback was that the detent escapement as it was used in pocket chronometers was prone to stopping as a result of motion. Most escapements are capable of being stopped by a sudden movement but the detent escapement gives an impulse to the balance only when it is moving in one direction. The escapement is therefore not self-starting. The lever escapement, as used in most modern mechanical watches, avoided this problem. In common with most other escapements it gave an impulse to the balance in both directions of the balance swing. This creates another problem in doing so because the introduction of a lever between the balance and the final (escape) wheel of the escapement requires lubrication on the acting surfaces.

References