Toxicity label

Last updated
Toxicity labels
Toxicity labels.svg
Red, yellow, blue and green labels.
Effective regionIndia
Effective since1971
Product category Pesticides
Legal statusMandatory
Mandatory since1971

Toxicity labels [1] viz; red label, yellow label, blue label and green label are mandatory labels employed on pesticide containers in India identifying the level of toxicity (that is, the toxicity class) of the contained pesticide. [1] [2] [3] The schemes follows from the Insecticides Act of 1968 [1] and the Insecticides Rules of 1971.

The labeling follows a general scheme as laid down in the Insecticides Rules, 1971, and contains information such as brand name, name of manufacturer, name of the antidote in case of accidental consumption etc. A major aspect of the label is a color mark which represents the toxicity of the material by a color code. Thus the labelling scheme proposes four different colour labels: viz red, yellow, blue, and green. [4]

LabelNameLevel of toxicityOral lethal dose (mg/kg)Listed chemicals
Red toxicity label indicating "Highly Toxic" substance SVG.svg Red labelExtremely toxic1–50 Monocrotophos, zinc phosphide, ethyl mercury acetate, and others.
Yellow toxicity label.svg Yellow labelHighly toxic51–500 Endosulfan, carbaryl, [2] quinalphos, [2] and others.
Blue toxicity label.svg Blue labelModerately toxic501–5000 Malathion, thiram, glyphosate, [2] and others.
Green toxicity label.svg Green labelSlightly toxic> 5000 Mancozeb, oxyfluorfen, mosquito repellant oils and liquids, and most other household insecticides.

The toxicity classification applies only to pesticides which are allowed to be sold in India. Some of the classified pesticides may be banned in somes states of India, by decision of the state governments. Some of the red-label and yellow-label pesticides were banned in the state of Kerala following the Endosulfan protests of 2011. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Green</span> Additive primary color visible between blue and yellow

Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495–570 nm. In subtractive color systems, used in painting and color printing, it is created by a combination of yellow and cyan; in the RGB color model, used on television and computer screens, it is one of the additive primary colors, along with red and blue, which are mixed in different combinations to create all other colors. By far the largest contributor to green in nature is chlorophyll, the chemical by which plants photosynthesize and convert sunlight into chemical energy. Many creatures have adapted to their green environments by taking on a green hue themselves as camouflage. Several minerals have a green color, including the emerald, which is colored green by its chromium content.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are substances used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

Pyrethrum was a genus of several Old World plants now classified as Chrysanthemum or Tanacetum which are cultivated as ornamentals for their showy flower heads. Pyrethrum continues to be used as a common name for plants formerly included in the genus Pyrethrum. Pyrethrum is also the name of a natural insecticide made from the dried flower heads of Chrysanthemum cinerariifolium and Chrysanthemum coccineum. The insecticidal compounds present in these species are pyrethrins.

<span class="mw-page-title-main">Bifenthrin</span> Chemical compound

Bifenthrin is a pyrethroid insecticide. It is widely used against ant infestations.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Color wheel</span> Illustrative organization of color hues

A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

Pesticides vary in their effects on bees. Contact pesticides are usually sprayed on plants and can kill bees when they crawl over sprayed surfaces of plants or other areas around it. Systemic pesticides, on the other hand, are usually incorporated into the soil or onto seeds and move up into the stem, leaves, nectar, and pollen of plants.

<span class="mw-page-title-main">Federal Insecticide, Fungicide, and Rodenticide Act</span> US federal law governing pesticide regulation

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is a United States federal law that set up the basic U.S. system of pesticide regulation to protect applicators, consumers, and the environment. It is administered and regulated by the United States Environmental Protection Agency (EPA) and the appropriate environmental agencies of the respective states. FIFRA has undergone several important amendments since its inception. A significant revision in 1972 by the Federal Environmental Pesticide Control Act (FEPCA) and several others have expanded EPA's present authority to oversee the sales and use of pesticides with emphasis on the preservation of human health and protection of the environment by "(1) strengthening the registration process by shifting the burden of proof to the chemical manufacturer, (2) enforcing compliance against banned and unregistered products, and (3) promulgating the regulatory framework missing from the original law".

<span class="mw-page-title-main">Endosulfan</span> Chemical compound

Endosulfan is an off-patent organochlorine insecticide and acaricide that is being phased out globally. It became a highly controversial agrichemical due to its acute toxicity, potential for bioaccumulation, and role as an endocrine disruptor. Because of its threats to human health and the environment, a global ban on the manufacture and use of endosulfan was negotiated under the Stockholm Convention in April 2011. The ban has taken effect in mid-2012, with certain uses exempted for five additional years. More than 80 countries, including the European Union, Australia, New Zealand, several West African nations, the United States, Brazil, and Canada had already banned it or announced phase-outs by the time the Stockholm Convention ban was agreed upon. It is still used extensively in India and China despite laws against its use. It is also used in a few other countries. It is produced by the Israeli firm Makhteshim Agan and several manufacturers in India and China. On 13.05.2011, the India Supreme Court ordered a ban on the production and sale of endosulfan in India, pending further notice.

<span class="mw-page-title-main">Fenthion</span> Chemical compound

Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class.

<span class="mw-page-title-main">Toxicity class</span> Pesticide classification system

Toxicity class refers to a classification system for pesticides that has been created by a national or international government-related or -sponsored organization. It addresses the acute toxicity of agents such as soil fumigants, fungicides, herbicides, insecticides, miticides, molluscicides, nematicides, or rodenticides.

Insecticidal soap is used to control many plant insect pests. Soap has been used for more than 200 years as an insect control. Because insecticidal soap works on direct contact with pests via the disruption of cell membranes when the insect is penetrated with fatty acids, the insect's cells leak their contents causing the insect to dehydrate and die. Insecticidal soap is sprayed on plants until the entire plant is saturated because the insecticidal properties of the soap occurs when the solution is wet. Soaps have a low mammalian toxicity and are therefore considered safe to be used around children and pets, and may be used in organic farming.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Clothianidin</span> Chemical compound

Clothianidin is an insecticide developed by Takeda Chemical Industries and Bayer AG. Similar to thiamethoxam and imidacloprid, it is a neonicotinoid. Neonicotinoids are a class of insecticides that are chemically similar to nicotine, which has been used as a pesticide since the late 1700s. Clothianidin and other neonicotinoids act on the central nervous system of insects as an agonist of nAChR, the same receptor as acetylcholine, the neurotransmitter that stimulates and activating post-synaptic acetylcholine receptors but not inhibiting AChE. Clothianidin and other neonicotinoids were developed to last longer than nicotine, which is more toxic and which breaks down too quickly in the environment. However, studies published in 2012 show that neonicotinoid dust released at planting time may persist in nearby fields for several years and be taken up into non-target plants, which are then foraged by bees and other insects.

<span class="mw-page-title-main">Thiamethoxam</span> Chemical compound

Thiamethoxam is the ISO common name for a mixture of cis-trans isomers used as a systemic insecticide of the neonicotinoid class. It has a broad spectrum of activity against many types of insects and can be used as a seed dressing.

<span class="mw-page-title-main">Thiacloprid</span> Chemical compound

Thiacloprid is an insecticide of the neonicotinoid class. Its mechanism of action is similar to other neonicotinoids and involves disruption of the insect's nervous system by stimulating nicotinic acetylcholine receptors. Thiacloprid was developed by Bayer CropScience for use on agricultural crops to control of a variety of sucking and chewing insects, primarily aphids and whiteflies.

<span class="mw-page-title-main">Diflubenzuron</span> Chemical compound

Diflubenzuron is an insecticide of the benzoylurea class. It is used in forest management and on field crops to selectively control insect pests, particularly forest tent caterpillar moths, boll weevils, gypsy moths, and other types of moths. It is a widely used larvicide in India for control of mosquito larvae by public health authorities. Diflubenzuron is approved by the WHO Pesticide Evaluation Scheme.

<span class="mw-page-title-main">Quinalphos</span> Chemical compound

Quinalphos is an organothiophosphate chemical chiefly used as a pesticide. It is a reddish-brown liquid. The chemical formula is C12H15N2O3PS, and IUPAC name O,O-diethyl O-quinoxalin-2-yl phosphorothioate. Ranked 'moderately hazardous' in World Health Organization's (WHO) acute hazard ranking, use of quinalphos, classified as a yellow label (highly toxic) pesticide in India, is widely used in the following crops: wheat, rice, coffee, sugarcane, and cotton.

<span class="mw-page-title-main">Sulfoxaflor</span> Chemical compound

Sulfoxaflor, also marketed as Isoclast, is a systemic insecticide that acts as an insect neurotoxin. A pyridine and a trifluoromethyl compound, it is a member of a class of chemicals called sulfoximines, which act on the central nervous system of insects.

<span class="mw-page-title-main">Cyantraniliprole</span> Chemical compound

Cyantraniliprole is an insecticide of the ryanoid class, specifically a diamide insecticide. It is approved for use in the United States, Canada, China, and India. Because of its uncommon mechanism of action as a ryanoid, it has activity against pests such as Diaphorina citri that have developed resistance to other classes of insecticides.

References

  1. 1 2 3 The Tribune. 'Knowing labels can save lives' by Divender Gupta.
  2. 1 2 3 4 5 "ExpressBuzz. 'List of substitutes issued for banned pesticides'". Archived from the original on 2016-06-24. Retrieved 2012-01-10.
  3. The Hindu. 'Chemicals safe, says Rubber Board'.
  4. Central Insecticides Board. Insecticides Rules, 1971.