Trakhtenbrot's theorem

Last updated

In logic, finite model theory, and computability theory, Trakhtenbrot's theorem (due to Boris Trakhtenbrot) states that the problem of validity in first-order logic on the class of all finite models is undecidable. In fact, the class of valid sentences over finite models is not recursively enumerable (though it is co-recursively enumerable).

Contents

Trakhtenbrot's theorem implies that Gödel's completeness theorem (that is fundamental to first-order logic) does not hold in the finite case. Also it seems counter-intuitive that being valid over all structures is 'easier' than over just the finite ones.

The theorem was first published in 1950: "The Impossibility of an Algorithm for the Decidability Problem on Finite Classes". [1]

Mathematical formulation

We follow the formulations as in Ebbinghaus and Flum [2]

Theorem

Satisfiability for finite structures is not decidable in first-order logic.
That is, the set {φ | φ is a sentence of first-order logic that is satisfiable among finite structures} is undecidable.

Corollary

Let σ be a relational vocabulary with one at least binary relation symbol.

The set of σ-sentences valid in all finite structures is not recursively enumerable.

Remarks

  1. This implies that Gödel's completeness theorem fails in the finite since completeness implies recursive enumerability.
  2. It follows that there is no recursive function f such that: if φ has a finite model, then it has a model of size at most f(φ). In other words, there is no effective analogue to the Löwenheim–Skolem theorem in the finite.

Intuitive proof

This proof is taken from Chapter 10, section 4, 5 of Mathematical Logic by H.-D. Ebbinghaus.

As in the most common proof of Gödel's First Incompleteness Theorem through using the undecidability of the halting problem, for each Turing machine there is a corresponding arithmetical sentence , effectively derivable from , such that it is true if and only if halts on the empty tape. Intuitively, asserts "there exists a natural number that is the Gödel code for the computation record of on the empty tape that ends with halting".

If the machine does halt in finite steps, then the complete computation record is also finite, then there is a finite initial segment of the natural numbers such that the arithmetical sentence is also true on this initial segment. Intuitively, this is because in this case, proving requires the arithmetic properties of only finitely many numbers.

If the machine does not halt in finite steps, then is false in any finite model, since there's no finite computation record of that ends with halting.

Thus, if halts, is true in some finite models. If does not halt, is false in all finite models. So, does not halt if and only if is true over all finite models.

The set of machines that does not halt is not recursively enumerable, so the set of valid sentences over finite models is not recursively enumerable.

Alternative proof

In this section we exhibit a more rigorous proof from Libkin. [3] Note in the above statement that the corollary also entails the theorem, and this is the direction we prove here.

Theorem

For every relational vocabulary τ with at least one binary relation symbol, it is undecidable whether a sentence φ of vocabulary τ is finitely satisfiable.

Proof

According to the previous lemma, we can in fact use finitely many binary relation symbols. The idea of the proof is similar to the proof of Fagin's theorem, and we encode Turing machines in first-order logic. What we want to prove is that for every Turing machine M we construct a sentence φM of vocabulary τ such that φM is finitely satisfiable if and only if M halts on the empty input, which is equivalent to the halting problem and therefore undecidable.

Let M= ⟨Q, Σ, δ, q0, Qa, Qr⟩ be a deterministic Turing machine with a single infinite tape.

Since we are dealing with the problem of halting on an empty input we may assume w.l.o.g. that Δ={0,1} and that 0 represents a blank, while 1 represents some tape symbol. We define τ so that we can represent computations:

τ := {<, min, T0 (⋅,⋅), T1 (⋅,⋅), (Hq(⋅,⋅))(q ∈ Q)}

Where:

The sentence φM states that (i) <, min, Ti's and Hq's are interpreted as above and (ii) that the machine eventually halts. The halting condition is equivalent to saying that Hq∗(s, t) holds for some s, t and q∗ ∈ Qa ∪ Qr and after that state, the configuration of the machine does not change. Configurations of a halting machine (the nonhalting is not finite) can be represented as a τ (finite) sentence (more precisely, a finite τ-structure which satisfies the sentence). The sentence φM is: φ ≡ α ∧ β ∧ γ ∧ η ∧ ζ ∧ θ.

We break it down by components:

Where θ2 is:

And:

Where θ3 is:

s-1 and t+1 are first-order definable abbreviations for the predecessor and successor according to the ordering <. The sentence θ0 assures that the tape content in position s changes from 0 to 1, the state changes from q to q', the rest of the tape remains the same and that the head moves to s-1 (i. e. one position to the left), assuming s is not the first position in the tape. If it is, then all is handled by θ1: everything is the same, except the head does not move to the left but stays put.

If φM has a finite model, then such a model that represents a computation of M (that starts with the empty tape (i.e. tape containing all zeros) and ends in a halting state). If M halts on the empty input, then the set of all configurations of the halting computations of M (coded with <, Ti's and Hq's) is a model of φM, which is finite, since the set of all configurations of halting computations is finite. It follows that M halts on the empty input iff φM has a finite model. Since halting on the empty input is undecidable, so is the question of whether φM has a finite model (equivalently, whether φM is finitely satisfiable) is also undecidable (recursively enumerable, but not recursive). This concludes the proof.

Corollary

The set of finitely satisfiable sentences is recursively enumerable.

Proof

Enumerate all pairs where is finite and .

Corollary

For any vocabulary containing at least one binary relation symbol, the set of all finitely valid sentences is not recursively enumerable.

Proof

From the previous lemma, the set of finitely satisfiable sentences is recursively enumerable. Assume that the set of all finitely valid sentences is recursively enumerable. Since ¬φ is finitely valid iff φ is not finitely satisfiable, we conclude that the set of sentences which are not finitely satisfiable is recursively enumerable. If both a set A and its complement are recursively enumerable, then A is recursive. It follows that the set of finitely satisfiable sentences is recursive, which contradicts Trakhtenbrot's theorem.

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior, unlike a syntactic property. A property is non-trivial if it is neither true for every partial computable function, nor false for every partial computable function.

In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .

<span class="mw-page-title-main">Arithmetical hierarchy</span> Hierarchy of complexity classes for formulas defining sets

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical.

Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.

In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

In computability theory, the T predicate, first studied by mathematician Stephen Cole Kleene, is a particular set of triples of natural numbers that is used to represent computable functions within formal theories of arithmetic. Informally, the T predicate tells whether a particular computer program will halt when run with a particular input, and the corresponding U function is used to obtain the results of the computation if the program does halt. As with the smn theorem, the original notation used by Kleene has become standard terminology for the concept.

In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.

In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs.

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

Dependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of .

Pure inductive logic (PIL) is the area of mathematical logic concerned with the philosophical and mathematical foundations of probabilistic inductive reasoning. It combines classical predicate logic and probability theory. Probability values are assigned to sentences of a first-order relational language to represent degrees of belief that should be held by a rational agent. Conditional probability values represent degrees of belief based on the assumption of some received evidence.

References

  1. Trakhtenbrot, Boris (1950). "The Impossibility of an Algorithm for the Decidability Problem on Finite Classes". Proceedings of the USSR Academy of Sciences (in Russian). 70 (4): 569–572.
  2. Ebbinghaus, Heinz-Dieter; Flum, Jörg (1995). Finite Model Theory. Springer Science+Business Media. ISBN   978-3-540-60149-4.
  3. Libkin, Leonid (2010). Elements of Finite Model Theory. Texts in Theoretical Computer Science. ISBN   978-3-642-05948-3.