Transistor laser

Last updated

Transistor laser is a semiconductor device that functions as a transistor with an electrical output and an optical output, as opposed to the typical two electrical outputs. This optical output separates it from typical transistors and, because optical signals travel faster than electrical signals, has the potential to speed up computing immensely. Researchers who discovered the transistor laser developed a new model of Kirchhoff's current law to better model the behavior of simultaneous optical and electrical output.

Contents

Discovery

The team credited with discovering the transistor laser was headed by Milton Feng and Nick Holonyak, Jr., and was based at the University of Illinois at Urbana-Champaign. Research into the transistor laser came about after Feng and Holonyak created the first light-emitting transistor [1] in 2004. [2] Feng and his team then modified the light-emitting transistor to focus the light its output into a laser beam. Their research was funded by DARPA. [3] The paper written about the discovery of the transistor laser was ranked as a top five paper out of all of Applied Physics Letters ’ history, and the transistor laser was called one of the top 100 discoveries by Discover . [1]

Construction of transistor

The transistor laser functions like a typical transistor, but emits infrared light through one of its outputs rather than electricity. A reflective cavity within the device focuses the emitted light into a laser beam. The transistor laser is a heterojunction bipolar transistor (using different materials between the base and emitter regions) that employs a quantum well in its base region that causes emissions of infrared light. While all transistors emit some small amount of light during operation, the use of a quantum well increases the intensity of light output by as much as 40 times. [4]

The laser output of the device works when the quantum well in the base region captures electrons that would normally be sent out through the electrical output. These electrons then undergo a process of radiative recombination, during which electrons and positively charged "holes" recombine in the base. [5] While this process occurs in all transistors, it has an exceedingly short lifespan of only 30 picoseconds in the transistor laser, allowing for faster operation. [3] Photons are then released through stimulated emission. Light bounces back and forth between reflective walls inside the 2.2 micrometer wide emitter, [6] that acts as a resonant cavity. Finally, light is emitted as a laser. [7]

The device was initially constructed out of layers of indium gallium phosphide, gallium arsenide, and indium gallium arsenide, which prevented the device from running without being cooled with liquid nitrogen. [3] Current materials allow for operation at 25 °C [8] and continuous wave operation (continuously emitting light) [9] at 3 GHz. [7] The transistor laser can produce laser output without any resonance peak in the frequency response. It also does not suffer from unwanted self-resonance that results in errors in transmitted information that would necessitate complicated external circuitry to rectify. [8]

Potential to speed up computers

Even though the transistor laser is still only the subject of research, there has been a significant amount of speculation as to what one could be used for, especially in computing. For instance, its optical capabilities could be used to transfer data between memory chips, graphics cards, or other internal computer elements at faster rates. [8] Currently, optic-fiber communication requires transmitters that convert electrical signals to pulses of light, and then a converter on the other end to revert these pulses back to electrical signals. [6] This makes optical communication within computers impractical. Optical communication within computers could soon be practical, though, because the conversion of electricity to optical signals and vice versa occurs within the transistor laser without the need for external circuitry. The device could also speed up current optical communication in other applications, such as in the communication of large amounts of data over long distances. [3]

Changing Kirchhoff's Laws

The research team that discovered the transistor laser claimed that one of Kirchhoff’s laws would have to be reconstructed to include energy conservation, as opposed to just current and charge. Because the transistor laser provides two different kinds of output, the team of researchers responsible for the transistor laser had to modify Kirchhoff’s current law to apply to the balance of energy as well as the balance of charge. [10] This marked the first time Kirchhoff’s laws had been extended to apply to not just electrons, but photons, too. [11]

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Semiconductor device</span> Electronic component that exploits the electronic properties of semiconductor materials

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum or as free electrons and ions through an ionized gas.

<span class="mw-page-title-main">Band gap</span> Energy range in a solid where no electron states exist

In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band to the conduction band, then current can flow. Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps are generally insulators, those with small band gaps are semiconductor, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Indium phosphide</span> Chemical compound

Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

The heterojunction bipolar transistor (HBT) is a type of bipolar junction transistor (BJT) which uses differing semiconductor materials for the emitter and base regions, creating a heterojunction. The HBT improves on the BJT in that it can handle signals of very high frequencies, up to several hundred GHz. It is commonly used in modern ultrafast circuits, mostly radio frequency (RF) systems, and in applications requiring a high power efficiency, such as RF power amplifiers in cellular phones. The idea of employing a heterojunction is as old as the conventional BJT, dating back to a patent from 1951. Detailed theory of heterojunction bipolar transistor was developed by Herbert Kroemer in 1957.

<span class="mw-page-title-main">Blue laser</span> Laser which emits light with blue wavelengths

A blue laser emits electromagnetic radiation with a wavelength between 400 and 500 nanometers, which the human eye sees in the visible spectrum as blue or violet.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components which form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits utilize photons as opposed to electrons that are utilized by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near infrared (850–1650 nm).

A hybrid silicon laser is a semiconductor laser fabricated from both silicon and group III-V semiconductor materials. The hybrid silicon laser was developed to address the lack of a silicon laser to enable fabrication of low-cost, mass-producible silicon optical devices. The hybrid approach takes advantage of the light-emitting properties of III-V semiconductor materials combined with the process maturity of silicon to fabricate electrically driven lasers on a silicon wafer that can be integrated with other silicon photonic devices.

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

Milton Feng co-created the first transistor laser, working with Nick Holonyak in 2004. The paper discussing their work was voted in 2006 as one of the five most important papers published by the American Institute of Physics since its founding 75 years ago. In addition to the invention of transistor laser, he is also well known for inventions of other "major breakthrough" devices, including the world's fastest transistor and light-emitting transistor (LET). As of May, 2009 he is a professor at the University of Illinois at Urbana–Champaign and holds the Nick Holonyak Jr. Endowed Chair Professorship.

A quantum well laser is a laser diode in which the active region of the device is so narrow that quantum confinement occurs. Laser diodes are formed in compound semiconductor materials that are able to emit light efficiently. The wavelength of the light emitted by a quantum well laser is determined by the width of the active region rather than just the bandgap of the materials from which it is constructed. This means that much shorter wavelengths can be obtained from quantum well lasers than from conventional laser diodes using a particular semiconductor material. The efficiency of a quantum well laser is also greater than a conventional laser diode due to the stepwise form of its density of states function.

An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in optical computing and fiber-optic communication networks. Such technology has the potential to exceed the speed of electronics, while conserving more power. The fastest demonstrated all-optical switching signal is 900 attoseconds, which paves the way to develop ultrafast optical transistors.

<span class="mw-page-title-main">James R. Biard</span> American electrical engineer and inventor (1931–2022)

James Robert Biard was an American electrical engineer and inventor who held 73 U.S. patents. Some of his more significant patents include the first infrared light-emitting diode (LED), the optical isolator, Schottky clamped logic circuits, silicon Metal Oxide Semiconductor Read Only Memory, a low bulk leakage current avalanche photodetector, and fiber-optic data links. In 1980, Biard became a member of the staff of Texas A&M University as an Adjunct Professor of Electrical Engineering. In 1991, he was elected as a member into the National Academy of Engineering for contributions to semiconductor light-emitting diodes and lasers, Schotky-clamped logic, and read-only memories.

A light-emitting transistor or LET is a form of transistor that emits light. Higher efficiency than light-emitting diode (LED) is possible.

References

  1. 1 2 "| Department of Physics at the U of I". physics.illinois.edu. Archived from the original on 2013-01-25.
  2. Kloeppel, James E. "News Bureau | University of Illinois." New Light-emitting Transistor Could Revolutionize Electronics Industry. News Bureau, 5 Jan. 2004. Web. 12 Nov. 2012. <http://news.illinois.edu/news/04/0105LET.html>.
  3. 1 2 3 4 "New Transistor Laser Could Lead To Faster Signal Processing." ScienceDaily. ScienceDaily, 29 Nov. 2004. Web. 18 Oct. 2012. <https://www.sciencedaily.com/releases/2004/11/041123210820.htm>.
  4. Rowe, Martin. "Transistor Laser Could Change Communications." TMWorld. Test and Measurement World, 10 July 2010. Web. 11 Nov. 2012. <http://tmworld.com/design/manufacturing/4388168/Transistor-laser-could-change-communications>.
  5. Troy, Charles T. "Transistor Laser Breaks the Law." Photonics Spectra. Laurin Publishing, Aug. 2010. Web. 10 Nov. 2012 <http://www.photonics.com/Article.aspx?AID=43340>.
  6. 1 2 Holonyak, Nick, Jr., and Milton Feng. "The Transistor Laser." IEEE Spectrum. IEEE, Feb. 2006. Web. 10 Nov. 2012. <https://spectrum.ieee.org/computing/hardware/the-transistor-laser/0>.
  7. 1 2 Feng, M., N. Holonyak, G. Walter, and R. Chan. "Room Temperature Continuous Wave Operation of a Heterojunction Bipolar Transistor Laser." Applied Physics Letters 87.13 (2005): 131103-31103-3. Print.
  8. 1 2 3 "The Transistor Laser: A Radical, Revolutionary Device." Compound Semiconductors Gallium Indium Arsenide Nitride LED InP SiC GaN. 01 Feb. 2011. Web. 18 Oct. 2012. <http://www.compoundsemiconductor.net/csc/features-details.php?cat=features&id=19733050>.
  9. Paschotta, Rüdiger. "Continuous-wave Operation." Article on Continuous-wave Operation, Cw. RP Photonics, n.d. Web. 17 Nov. 2012. <http://www.rp-photonics.com/continuous_wave_operation.html>.
  10. Then, H. W., N. Holonyak, Jr., and M. Feng. "Microwave Circuit Model of the Three-port Transistor Laser." JOURNAL OF APPLIED PHYSICS 108 (2010): n. pag. Web.
  11. "Redefining Electrical Current Law With the Transistor Laser." ScienceDaily. ScienceDaily, 17 May. 2010. Web. 18 Oct. 2012. <https://www.sciencedaily.com/releases/2010/05/100512164335.htm>.