Transparent exopolymer particles

Last updated

Transparent exopolymer particles (TEPs) are extracellular acidic polysaccharides produced by phytoplankton and bacteria in saltwater, freshwater, and wastewater. [1] They are incredibly abundant and play a significant role in biogeochemical cycling of carbon and other elements in water. [2] Through this, they also play a role in the structure of food webs and trophic levels. TEP production and overall concentration has been observed to be higher in the Pacific Ocean compared to the Atlantic, and is more related to solar radiation in the Pacific. [3] TEP concentration has been found to decrease with depth, having the highest concentration at the surface, especially associated with the SML, either by upward flux or sea surface production. Chlorophyll a has been found to be the best indicator of TEP concentration, rather than heterotrophic grazing abundance, further emphasizing the role of phytoplankton in TEP production. TEP concentration is especially enhanced by haptophyte phytoplanktonic dominance, solar radiation exposure, and close proximity to sea ice. TEPs also do not seem to show any diel cycles. [4] High concentrations of TEPs in the surface ocean slow the sinking of solid particle aggregations, prolonging pelagic residence time. TEPs may provide an upward flux of materials such as bacteria, phytoplankton, carbon, and trace nutrients. [5] High TEP concentrations were found under arctic sea ice, probably released by sympagic algae. TEP is efficiently recycled in the ocean, as heterotrophic grazers such as zooplankton and protists consume TEP and produce new TEP precursors to be reused, further emphasizing the importance of TEPs in marine carbon cycling. [6] TEP abundance tends to be higher in coastal, shallow waters compared to deeper, oceanic waters. Diatom-dominated phytoplankton colonies produce larger, and stickier, TEPs, which may indicate that TEP size distribution and composition may be a useful tool in determining aggregate planktonic community structure. [7]

TEPs are formed from cell surface mucus sloughing, the disintegration of bacterial colonies, and precursors released by growing or senescent phytoplankton. [8] TEP precursors can be fibrillar, forming larger colloids, or aggregations, and within hours to days after release from the cell are fully formed transparent exopolymer particles. [9] While most exopolymeric substances range from loose slimes to tight shells surrounding cells, TEPs exist as individual particles, allowing them to aggregate and be collected by filtration. [10] They are highly sticky, forming aggregations of solid particles known as marine snow, and are actually associated with all marine aggregations investigated thus far. [11] TEPs have a high C:N ratio compared to the Redfield Ratio, suggesting the significance of TEPs in the promotion of carbon sequestration and particle sedimentation to the benthos, but this is complicated due to bacterial decomposition, as well as heterotrophic grazing by zooplankton such as euphausiids and protists. [12] This also suggests that TEPs may represent a link between the oceanic microbial loop and other food webs, as well as creating short circuit food webs within the pelagic. [13]

TEPs provide a surface within the pelagic ocean for bacterial colonies to form. The bacterial colonies associated with TEPs tend to be dominated by Alteromonadaceae, specifically taxonomic units previously associated with microgel habitats, Marinobacter and Glaciecola. [14] A novel species of bacteria, Lentisphaera araneosa, was discovered colonizing TEPs off the coast of Oregon. [15] Phytoplankton have been found to be the most significant source of TEP, but TEP abundance is also positively correlated with bacterial abundance. Bacteria either enhance the production of TEP by phytoplankton or contribute to the production of it. TEP presence is necessary for the sedimentation of diatoms, but are not involved in the sedimentation of foraminifera. [16] [17] Prochlorococcus sp. decay from increased solar radiation was found to promote TEP production, suggesting that picocyanobacteria are a source material for TEP. [18] During a controlled diatom bloom, TEP concentrations saw exponential growth during bloom growth, flocculation, and senescence, but the production of TEP did not increase after nutrient depletion. In fact, TEP concentration was found to be a linear function of chlorophyll a and POC, suggesting that TEP production is linked to phytoplankton growth. The ratio of TEP to phytoplankton was a determining factor in bloom flocculation. During flocculation, TEP, due to its high stickiness, aggregated with itself and phytoplankton, but phytoplankton did not independently flocculate to themselves. Bacterial degradation may have contributed to TEP concentration loss. [19] [20]

The significance of TEPs in biogeochemical cycling and trophic cascading has always been suspected, but were not able to be accurately quantified until recently. Using light microscopy to quantitatively analyze TEP is a slow and tedious process. The use of Alcian blue to stain these otherwise transparent molecules has been beneficial in more efficiently analyzing them using spectrophotometry. [21] TEPs have been referred to as ‘protobiofilms’ due to their intense colonization by bacteria, displaying many characteristics of a biofilm without being attached to a surface. Planktonic microgels, another term for TEPs, and their role as protobiofilms, may be of some significance to water and water treatment industries. [22] TEPs may be useful in the desalination and water treatment industries through its contribution to biofouling mechanisms. [23]

Related Research Articles

The photic zone, euphotic zone, epipelagic zone, or sunlight zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological processes that supply nutrients into the upper water column. The photic zone is home to the majority of aquatic life due to the activity of the phytoplankton. The thicknesses of the photic and euphotic zones vary with the intensity of sunlight as a function of season and latitude and with the degree of water turbidity. The bottommost, or aphotic, zone is the region of perpetual darkness that lies beneath the photic zone and includes most of the ocean waters.

<span class="mw-page-title-main">Biological pump</span> Carbon capture process in oceans

The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component. It is the part of the broader oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

SeaWiFS was a satellite-borne sensor designed to collect global ocean biological data. Active from September 1997 to December 2010, its primary mission was to quantify chlorophyll produced by marine phytoplankton.

An exopolymer is a biopolymer that is secreted by an organism into the environment. These exopolymers include the biofilms produced by bacteria to anchor them and protect them from environmental conditions. One type of expolymer, Transparent Exopolymers (TEP), found in both marine and aquatic ecosystems, are planktonic acidic polysaccharides of a gel-like consistency, originally defined by their ability to be stained visible by acidic Alcian Blue. Their free-floating characteristic sets TEPs aside from other extracellular polymeric substance subgroups where exopolymers exists as cell coating, dissolved slime or as part of biofilm matrices.

<span class="mw-page-title-main">Microbial loop</span> Trophic pathway in marine microbial ecosystems

The microbial loop describes a trophic pathway where, in aquatic systems, dissolved organic carbon (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by phytoplankton-zooplankton-nekton. In soil systems, the microbial loop refers to soil carbon. The term microbial loop was coined by Farooq Azam, Tom Fenchel et al. in 1983 to include the role played by bacteria in the carbon and nutrient cycles of the marine environment.

<span class="mw-page-title-main">Sea surface microlayer</span> Boundary layer where all exchange occurs between the atmosphere and the ocean

The sea surface microlayer (SML) is the boundary interface between the atmosphere and ocean, covering about 70% of Earth's surface. With an operationally defined thickness between 1 and 1,000 μm (1.0 mm), the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global marine biogeochemical and climate-related processes.

<i>Calanus finmarchicus</i> Species of crustacean

Calanus finmarchicus is a species of copepod and a component of the zooplankton, which is found in enormous amounts in the northern Atlantic Ocean.

<span class="mw-page-title-main">Langmuir circulation</span> Series of shallow, slow, counter-rotating vortices at the oceans surface aligned with the wind

In physical oceanography, Langmuir circulation consists of a series of shallow, slow, counter-rotating vortices at the ocean's surface aligned with the wind. These circulations are developed when wind blows steadily over the sea surface. Irving Langmuir discovered this phenomenon after observing windrows of seaweed in the Sargasso Sea in 1927. Langmuir circulations circulate within the mixed layer; however, it is not yet so clear how strongly they can cause mixing at the base of the mixed layer.

<span class="mw-page-title-main">Gelatinous zooplankton</span> Fragile and often translucent animals that live in the water column

Gelatinous zooplankton are fragile animals that live in the water column in the ocean. Their delicate bodies have no hard parts and are easily damaged or destroyed. Gelatinous zooplankton are often transparent. All jellyfish are gelatinous zooplankton, but not all gelatinous zooplankton are jellyfish. The most commonly encountered organisms include ctenophores, medusae, salps, and Chaetognatha in coastal waters. However, almost all marine phyla, including Annelida, Mollusca and Arthropoda, contain gelatinous species, but many of those odd species live in the open ocean and the deep sea and are less available to the casual ocean observer. Many gelatinous plankters utilize mucous structures in order to filter feed. Gelatinous zooplankton have also been called Gelata.

<span class="mw-page-title-main">Marine snow</span> Shower of organic detritus in the ocean

In the deep ocean, marine snow is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone. Because of the role of export production in the ocean's biological pump, it is typically measured in units of carbon. The term was coined by explorer William Beebe as observed from his bathysphere. As the origin of marine snow lies in activities within the productive photic zone, the prevalence of marine snow changes with seasonal fluctuations in photosynthetic activity and ocean currents. Marine snow can be an important food source for organisms living in the aphotic zone, particularly for organisms that live very deep in the water column.

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

The benthic boundary layer (BBL) is the layer of water directly above the sediment at the bottom of a body of water. Through specific sedimentation processes, certain organisms are able to live in this deep layer of water. The BBL is generated by the friction of the water moving over the surface of the substrate, which decrease the water current significantly in this layer. The thickness of this zone is determined by many factors, including the Coriolis force. The benthic organisms and processes in this boundary layer echo the water column above them.

The Great Salinity Anomaly (GSA) originally referred to an event in the late 1960s to early 1970s where a large influx of freshwater from the Arctic Ocean led to a salinity anomaly in the northern North Atlantic Ocean, which affected the Atlantic meridional overturning circulation. Since then, the term "Great Salinity Anomaly" has been applied to successive occurrences of the same phenomenon, including the Great Salinity Anomaly of the 1980s and the Great Salinity Anomaly of the 1990s. The Great Salinity Anomalies were advective events, propagating to different sea basins and areas of the North Atlantic, and is on the decadal-scale for the anomalies in the 1970s, 1980s, and 1990s.

Alice Alldredge is an American oceanographer and marine biologist who studies marine snow, carbon cycling, microbes and plankton in the ecology of the ocean. She has conducted research in the open sea, at her laboratory at the University of California, Santa Barbara as well as in collaboration with the Long Term Ecological Research Network (LTER) at the Mo'orea Coral Reef Long Term Ecological Research Site in Mo'orea, French Polynesia. According to the annual ISI Web of Knowledge list published by Thomson Reuters, she has been one of the most cited scientific researchers since 2003.

<span class="mw-page-title-main">Particulate organic matter</span>

Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters.

Bacterioplankton counting is the estimation of the abundance of bacterioplankton in a specific body of water, which is useful information to marine microbiologists. Various counting methodologies have been developed over the years to determine the number present in the water being observed. Methods used for counting bacterioplankton include epifluorescence microscopy, flow cytometry, measures of productivity through frequency of dividing cells (FDC), thymidine incorporation, and leucine incorporation.

Lepidodinium is a genus of dinoflagellates belonging to the family Gymnodiniaceae. Lepidodinium is a genus of green dinoflagellates in the family Gymnodiniales. It contains two different species, Lepidodiniumchlorophorum and Lepidodinium viride. They are characterised by their green colour caused by a plastid derived from Pedinophyceae, a green algae group. This plastid has retained chlorophyll a and b, which is significant because it differs from the chlorophyll a and c usually observed in dinoflagellate peridinin plastids. They are the only known dinoflagellate genus to possess plastids derived from green algae. Lepidodinium chlorophorum is known to cause sea blooms, partially off the coast of France, which has dramatic ecological and economic consequences. Lepidodinium produces some of the highest volumes of Transparent Exopolymer Particles of any phytoplankton, which can contribute to bivalve death and the creation of anoxic conditions in blooms, as well as playing an important role in carbon cycling in the ocean.

<span class="mw-page-title-main">Great Calcite Belt</span> High-calcite region of the Southern Ocean

The Great Calcite Belt (GCB) refers to a region of the ocean where there are high concentrations of calcite, a mineral form of calcium carbonate. The belt extends over a large area of the Southern Ocean surrounding Antarctica. The calcite in the Great Calcite Belt is formed by tiny marine organisms called coccolithophores, which build their shells out of calcium carbonate. When these organisms die, their shells sink to the bottom of the ocean, and over time, they accumulate to form a thick layer of calcite sediment.

Patricia Ana Matrai is a marine scientist known for her work on the cycling of sulfur. She is a senior research scientist at Bigelow Laboratory for Ocean Sciences.

Helle Ploug is marine scientist known for her work on particles in seawater. She is a professor at the University of Gothenburg, and was named a fellow of the Association for the Sciences of Limnology and Oceanography in 2017.

References

  1. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  2. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  3. Iuculano, Francesca; Mazuecos, Ignacio P.; Reche, Isabel; Agustí, Susana (2017). "Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP)". Frontiers in Microbiology. 8: 709. doi: 10.3389/fmicb.2017.00709 . PMC   5405065 . PMID   28491056. S2CID   10756421.
  4. Zamanillo, Marina; Ortega-Retuerta, Eva; Nunes, Sdena; Estrada, Marta; Sala, María Montserrat; Royer, Sarah-Jeanne; López-Sandoval, Daffne C.; Emelianov, Mikhail; Vaqué, Dolors; Marrasé, Cèlia; Simó, Rafel (15 November 2019). "Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean". Science of the Total Environment. 691: 736–748. Bibcode:2019ScTEn.691..736Z. doi:10.1016/j.scitotenv.2019.06.524. hdl: 10261/195124 . PMID   31325871. S2CID   198136628.
  5. Azetsu-Scott, Kumiko; Passow, Uta (2004). "Ascending marine particles: Significance of transparent exopolymer particles (TEP) in the upper ocean". Limnology and Oceanography. 49 (3): 741–748. Bibcode:2004LimOc..49..741A. doi: 10.4319/lo.2004.49.3.0741 . S2CID   32205017.
  6. Wurl, Oliver; Miller, Lisa; Vagle, Svein (2011). "Production and fate of transparent exopolymer particles in the ocean". Journal of Geophysical Research. 116 (C7). Bibcode:2011JGRC..116.0H13W. doi: 10.1029/2011JC007342 .
  7. Passow, U.; Alldredge, A. L. (1994). "Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean". Marine Ecology Progress Series. 113 (1/2): 185–198. Bibcode:1994MEPS..113..185P. doi: 10.3354/meps113185 . JSTOR   24849588.
  8. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  9. Passow, U (2000). "Formation of transparent exopolymer particles, TEP, from dissolved precursor material". Marine Ecology Progress Series. 192: 1–11. Bibcode:2000MEPS..192....1P. doi: 10.3354/meps192001 .
  10. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  11. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  12. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  13. Passow, U. (1 November 2002). "Transparent exopolymer particles (TEP) in aquatic environments". Progress in Oceanography. 55 (3–4): 287–333. Bibcode:2002PrOce..55..287P. doi:10.1016/S0079-6611(02)00138-6. S2CID   31747785.
  14. Zäncker, Birthe; Engel, Anja; Cunliffe, Michael (26 July 2019). "Bacterial communities associated with individual transparent exopolymer particles (TEP)". Journal of Plankton Research. 41 (4): 561–565. doi: 10.1093/plankt/fbz022 .
  15. Cho, Jang-Cheon; Vergin, Kevin L.; Morris, Robert M.; Giovannoni, Stephen J. (2004). "Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae". Environmental Microbiology. 6 (6): 611–621. doi:10.1111/j.1462-2920.2004.00614.x. PMID   15142250.
  16. Passow, U; Shipe, R. F; Murray, A; Pak, D. K; Brzezinski, M. A; Alldredge, A. L (1 March 2001). "The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter". Continental Shelf Research. 21 (4): 327–346. Bibcode:2001CSR....21..327P. doi:10.1016/S0278-4343(00)00101-1.
  17. Passow, U (2002). "Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton". Marine Ecology Progress Series. 236: 1–12. Bibcode:2002MEPS..236....1P. doi: 10.3354/meps236001 .
  18. Iuculano, Francesca; Mazuecos, Ignacio P.; Reche, Isabel; Agustí, Susana (2017). "Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP)". Frontiers in Microbiology. 8: 709. doi: 10.3389/fmicb.2017.00709 . PMC   5405065 . PMID   28491056. S2CID   10756421.
  19. Passow, Uta; Alldredge, Alice L. (1 January 1995). "Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP)". Deep Sea Research Part II: Topical Studies in Oceanography. 42 (1): 99–109. Bibcode:1995DSRII..42...99P. doi:10.1016/0967-0645(95)00006-C.
  20. Engel, Anja (1 March 2000). "The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom". Journal of Plankton Research. 22 (3): 485–497. doi:10.1093/plankt/22.3.485.
  21. Passow, U.; Alldredge, A. L. (1995). "A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)". Limnology and Oceanography. 40 (7): 1326–1335. Bibcode:1995LimOc..40.1326P. doi:10.4319/lo.1995.40.7.1326.
  22. Bar-Zeev, Edo; Berman-Frank, Ilana; Girshevitz, Olga; Berman, Tom (5 June 2012). "Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles". Proceedings of the National Academy of Sciences. 109 (23): 9119–9124. Bibcode:2012PNAS..109.9119B. doi: 10.1073/pnas.1203708109 . PMC   3384133 . PMID   22615362.
  23. Bar-Zeev, Edo; Passow, Uta; Romero-Vargas Castrillón, Santiago; Elimelech, Menachem (20 January 2015). "Transparent Exopolymer Particles: From Aquatic Environments and Engineered Systems to Membrane Biofouling". Environmental Science & Technology. 49 (2): 691–707. Bibcode:2015EnST...49..691B. doi:10.1021/es5041738. PMID   25494664.