Tree injection

Last updated

Trunk injection or endotherapy also known as vegetative endotherapy, [1] [2] [3] is a method of target-precise application of pesticides, [4] [5] [6] plant resistance activators, [7] or fertilizers [8] into the xylem vascular tissue of a tree with the purpose of protecting the tree from pests, or to inject nutrients to correct for nutrient deficiencies. This method largely relies on harnessing the tree's vascular system to translocate and distribute the active compounds into the wood, canopy and roots where protection or nutrition is needed. [9]

Contents

Trunk injection/endotherapy is currently the most popular method for control of damaging insects, [10] pathogens, [11] [12] and nematodes [13] [14] [15] in landscape tree care.

Endotherapy is the concept when treatments using the appropriate material formulation are carried out from the inside out through xylem translocation in the trunk/stem of plants during the photosynthetic cycle. Trunk injection is an older term that only reflects how the technique is performed. [16]

Description

Endotherapy has been developed primarily for use on large size[ clarification needed ] trees and in proximity of urban areas where ground- and air-spray applications are impractical due to substantial drift-driven pesticide losses or not allowed due to potential human exposure. However, the prime driver of tree injection use has been a wide spread need for control of many invasive tree pathogens and insects pests. The most infamous examples are that of fungi in the genus Ophiostoma that cause Dutch Elm Disease (DED) [17] and the insect known as the emerald ash borer (Agrilus planipennis) [18] which have specific biologies that lead to severe internal damage of wood and thus tree death, and which make their management extremely difficult or inefficient with classical pesticide application methods. Endotherapy for tree protection is viewed as environmentally safer alternative for pesticide application since the compound is delivered within the tree, [19] thus allowing for selective exposure to plant pests. In landscapes and urban zones trunk injection significantly reduces the non-target exposure of water, soil, air, and wildlife to pesticides and fertilizers. In the last 20 years, tree injection is gaining momentum with the development and availability of new, efficient injection devices and injectable and xylem mobile formulations of pesticides, biopesticides [20] and nutrients.

Endotherapy works by adding a water soluble chemical formulation directly into the lower trunk of the tree structure.[ how? ]

Applications

A number of newly occurring and fast spreading invasive insect pests and diseases such as Polyphagous Shot Hole Borer (PSHB) ( Euwallacea spp.), [21] which can vector plant pathogenic fungus Fusarium euwallaceae , [22] and Sudden Oak Death (SOD) caused by an Oomycete Phytophthora ramorum , establish the use of endotherapy as the most efficient tree protection technique in landscapes and urban forestry.[ according to whom? ]

In the past and recently, endotherapeutic treatment using agriculture products has been investigated in the perennial trees for control of pathogens and insect pests on fruit tree crops. The most investigated are diseases and pests of avocado, [23] [24] coconut palm, [25] [26] apple, [27] [28] and grapevine, [29] [30] such as Phytophthora root rot of avocado Phytophthora cinnamomi and avocado thrips Scirtothrips perseae, fire blight Erwinia amylovora and apple scab Venturia inaequalis , oblique banded leaf roller Choristoneura rosaceana and codling moth Cydia pomonella, and grapevine downy mildew Plasmopara viticola and powdery mildew Uncinula necator . Apple trees are especially interesting as a research model in agriculture since it is known that apple production requires intensive spray schedules for control of pathogenic fungus V. inaequalis with as many as 15-22 sprays of fungicides per season in humid climate. [31] [32]

Endotherapy of pesticides is considered as an option for precise compound delivery which will reduce the negative impact of drift-driven pesticide losses in the environment, that occur after aerial or ground spray applications of pesticides. [33] [34] Besides negative consequences of frequent pesticide applications in the environment, [35] trunk injection of grapevines is investigated in viticulture for control of pathogens with difficult biologies, such as Xylella fastidiosa , which infect and destroy woody tissues and that cannot be controlled efficiently by canopy spray applications of fungicides or bactericides. To increase the efficiency of injected compounds in trees and vines, important considerations are plant anatomy, [36] weather and soil conditions, [37] tree physiology processes, spatial and temporal distribution of injected compound, [38] and the chemical properties of injected compound and formulation. [39]

Related Research Articles

Blight refers to a specific symptom affecting plants in response to infection by a pathogenic organism.

<span class="mw-page-title-main">Fire blight</span> Disease of some Rosaceae trees (especially apples and pears) caused by Erwinia amylovora

Fire blight, also written fireblight, is a contagious disease affecting apples, pears, and some other members of the family Rosaceae. It is a serious concern to apple and pear producers. Under optimal conditions, it can destroy an entire orchard in a single growing season.

<span class="mw-page-title-main">Essential oil</span> Hydrophobic liquid containing volatile aroma compounds from plants

An essential oil is a concentrated hydrophobic liquid containing volatile chemical compounds from plants. Essential oils are also known as volatile oils, ethereal oils, aetheroleum, or simply as the oil of the plant from which they were extracted, such as oil of clove. An essential oil is essential in the sense that it contains the essence of the plant's fragrance—the characteristic fragrance of the plant from which it is derived. The term "essential" used here does not mean indispensable or usable by the human body, as with the terms essential amino acid or essential fatty acid, which are so called because they are nutritionally required by a living organism.

<span class="mw-page-title-main">Powdery mildew</span> Fungal plant disease

Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of ascomycete fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as its symptoms are quite distinctive. Infected plants display white powdery spots on the leaves and stems. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<i>Erwinia</i> Genus of bacteria

Erwinia is a genus of Enterobacterales bacteria containing mostly plant pathogenic species which was named for the famous plant pathologist, Erwin Frink Smith. It contains Gram-negative bacteria related to Escherichia coli, Shigella, Salmonella, and Yersinia. They are primarily rod-shaped bacteria.

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine, developed by scientists at Shell and Bayer in the 1980s.

<i>Pantoea agglomerans</i> Species of bacterium

Pantoea agglomerans is a Gram-negative bacterium that belongs to the family Erwiniaceae.

<i>Podosphaera macularis</i> Species of fungus

Podosphaera macularis is a plant pathogen infecting several hosts including chamomile, caneberrie, strawberries, hop, hemp and Cineraria. It causes powdery mildew of hops.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

Copper pesticides are copper compounds used as bactericides, algaecides, or fungicides. They can kill bacteria, oomycetes and algae, and prevent fungal spores from germinating. Common forms of fixed copper fungicides include copper sulfate, copper sulfate pentahydrate, copper hydroxide, copper oxychloride sulfate, cuprous oxide, and copper octanoate.

This is an index of articles relating to pesticides.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">Emamectin</span> Chemical compound

Emamectin is the 4″-deoxy-4″-methylamino derivative of abamectin, a 16-membered macrocyclic lactone produced by the fermentation of the soil actinomycete Streptomyces avermitilis. It is generally prepared as the salt with benzoic acid, emamectin benzoate, which is a white or faintly yellow powder. Emamectin is widely used in the US and Canada as an insecticide because of its chloride channel activation properties.

Sock Chin Gouk is a research scientist with the Victorian Department of Environment and Primary Industries in Melbourne.

<span class="mw-page-title-main">Fluxapyroxad</span> Chemical compound

Fluxapyroxad is a broad-spectrum pyrazole-carboxamide fungicide used on a large variety of commercial crops. It stunts fungus growth by inhibiting the succinate dehydrogenase (SQR) enzyme. Application of fluxapyroxad helps prevent many wilts and other fungal infections from taking hold. As with other systemic pesticides that have a long chemical half-life, there are concerns about keeping fluxapyroxad out of the groundwater, especially when combined with pyraclostrobin. There is also concern that some fungi may develop resistance to fluxapyroxad.

Eve Billing (1923–2019) was a UK plant pathologist specialising in diseases of fruit trees especially fire blight caused by Erwinia amylovora bacteria. She introduced a modelling system to predict the likelihood of outbreaks of fire blight and also methods for pathogen identification and treatment.

References

  1. Ferreira, Jordana Alves; Esparraguera, Llorenç Baronat; Queiroz, Sonia Claudia Nascimento; Bottoli, Carla Beatriz Grespan (July 2023). "Vegetative Endotherapy—Advances, Perspectives, and Challenges". Agriculture. 13 (7): 1465. doi: 10.3390/agriculture13071465 . ISSN   2077-0472.
  2. Aćimović, S. G.; VanWoerkom, A. H.; Reeb, P. D.; Vandervoort, C.; Garavaglia, T.; Cregg, B. M.; Wise, J. C. (2014). "Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies". Pest Management Science. 70 (11): 1751–1760. doi:10.1002/ps.3747. PMID   24481641.
  3. Düker, A.; Kubiak, R. (2011). "Stem injection of prohexadione carboxylic acid to protect blossoms of apple trees from fire blight infection (Erwinia amylovora)". Journal of Plant Diseases and Protection. 118 (5): 156–160. doi:10.1007/BF03356398. JSTOR   43229291. S2CID   87886407.
  4. Dula, T.; Kappes, E. M.; Horvath, A.; Rabai, A. (2007). "Preliminary trials on treatment of esca-infected grapevines with trunk injection of fungicides". Phytopathologia Mediterranea (46): 91–95. Archived from the original on 2015-01-21. Retrieved 2014-12-08.
  5. Darrieutort, P.; Lecomte, P. (2007). "Evaluation of a trunk injection technique to control grapevine wood diseases". Phytopathologia Mediterranea. 46 (1): 50–57. doi:10.1400/68068. JSTOR   26463270.
  6. Aćimović, S. G.; VanWoerkom, A. H.; Garavaglia, T.; Vandervoort, C.; Wise, J. C.; Sundin, G. W. (2013). "Control of (Venturia inaequalis) using trunk injection of biopesticides and fungicides in apple trees". Phytopathology. 103 (Suppl. 2): S21–S2169. doi:10.1094/PHYTO-103-6-S2.1. PMID   23676108.
  7. Aćimović, S. G.; Zeng, Q.; McGhee, G. C.; Wise, J. C.; Sundin, G. W. "Trunk-injected potassium phosphites and acibenzolar-S-methyl induce SAR in apple trees allowing control of fire blight (Erwinia amylovora)".
  8. Shaaban, M. M. (2009). "Injection Fertilization: A Full Nutritional Technique for Fruit Trees Saves 90-95% of Fertilizers and Maintains a Clean Environment" (PDF). Fruit, Vegetable and Cereal Science and Biotechnology. 3 (1): 22–27. Archived from the original (PDF) on 2015-09-24.
  9. Barney, D.; Walser, R.H.; Nelson, S.D.; Williams, C. F.; Jolley, Von D. (1985). "Control of iron chlorosis in apple trees with injections of ferrous sulfate and ferric citrate and with soil-applied iron-sul". Journal of Plant Nutrition. 7 (1–5): 313–317. doi:10.1080/01904168409363198.
  10. Doccola, J. J.; Bristol, E. J.; Sifleet, S. D.; Lojko, J.; Wild, P. M. (2007). "Efficacy and duration of trunk-injected imidacloprid in the management of hemlock woolly adelgid (Adelges tsugae)" (PDF). Arboriculture & Urban Forestry. 33 (1): 12–21. doi:10.48044/jauf.2007.002.
  11. Doccola, J. J.; Strom, B. L.; Brownie, C.; Klepzig, K. D. (2011). "Impact of Systemic Fungicides on Lesions Formed by Inoculation with the Bluestain Fungus (Ophiostoma minus) in Loblolly Pine (Pinus taeda L.)". Arboriculture & Urban Forestry. 37 (6): 288–292. doi: 10.48044/jauf.2011.037 . S2CID   195822640.
  12. Dal Maso, E.; Cocking, J.; Montecchio, L. (2014). "Efficacy tests on commercial fungicides against ash dieback in vitro and by trunk injection". Urban Forestry & Urban Greening. 13 (4): 697–703. doi:10.1016/j.ufug.2014.07.005.
  13. Viglierchio, D. R.; Maggenti, A. R.; Schmittt, R. V.; Paxman, G. A. (1977). "Nematicidal injection: targeted control of plant-parasitic nematodes of trees and vines". Journal of Nematology. 9 (4): 307–11. PMC   2620266 . PMID   19305613.
  14. Jansson, R. K.; Rabatin, S. (December 1997). "Curative and Residual Efficacy of Injection Applications of Avermectins for Control of Plant-parasitic Nematodes on Banana". Journal of Nematology. 29 (4S): 695–702. PMC   2619829 . PMID   19274271.
  15. Takai, K.; Suzuki, T.; Kawazu, K. (2003). "Development and preventative effect against pine wilt disease of a novel liquid formulation of emamectin benzoate". Pest Management Science. 59 (3): 365–370. doi:10.1002/ps.651. PMID   12639056.
  16. Ferreira, Jordana Alves; Esparraguera, Llorenç Baronat; Queiroz, Sonia Claudia Nascimento; Bottoli, Carla Beatriz Grespan (July 2023). "Vegetative Endotherapy—Advances, Perspectives, and Challenges". Agriculture. 13 (7): 1465. doi: 10.3390/agriculture13071465 . ISSN   2077-0472.
  17. Clifford, D. R.; Cooke, L. R.; Gendle, P. (1977). "Distribution and performance of chemicals injected into trees for the control of fungal diseases". Netherlands Journal of Plant Pathology. 83 (S1): 331–337. doi:10.1007/BF03041448. S2CID   9944976.
  18. McCullough, D. G.; Poland, T. M.; Anulewicz, A. C.; Lewis, P.; Cappaert, D. (2011). "Evaluation of Agrilus planipennis (Coleoptera: Buprestidae) control provided by emamectin benzoate and two neonicotinoid insecticides, one and two seasons after treatment". Journal of Economic Entomology (Submitted manuscript). 104 (5): 1599–612. doi: 10.1603/ec11101 . PMID   22066190. S2CID   266328.
  19. Percival, G.C.; Boyle, S. (2005). "Evaluation of microcapsule trunk injections for the control of apple scab and powdery mildew". Annals of Applied Biology. 147 (1): 119–127. doi:10.1111/j.1744-7348.2005.00019.x.
  20. Marshall, C. (2014). "Garlic injection could tackle tree diseases". BBC News - Science & Environment. Retrieved 9 October 2014.
  21. Eskalen, Akif (2020-01-18). "Polyphagous Shot Hole Borer". Center for Invasive Species Research. Retrieved 2021-08-10.
  22. Freeman, S.; Sharon, M.; Maymon, M.; Mendel, Z.; Protasov, A.; Aoki, T.; Eskalen, A.; O'Donnell, K. (2013). "Fusarium euwallaceae sp. nov. - a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California". Mycologia. 105 (6): 1595–1606. doi:10.3852/13-066. PMID   23928415. S2CID   6955638.
  23. Byrne, F. J.; Krieger, R. I.; Doccola, J.; Morse, J. G. (2014). "Seasonal timing of neonicotinoid and organophosphate trunk injections to optimize the management of avocado thrips in California avocado groves". Crop Protection. 57: 20–26. doi:10.1016/j.cropro.2013.11.023.
  24. Byrne, F. J.; Urena, A. A.; Robinson, L. J.; Krieger, R. I.; Doccola, J.; Morse, J. G. (2012). "Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves". Pest Management Science. 68 (5): 811–817. doi:10.1002/ps.2337. PMID   22396314.
  25. Ferreira, Jordana Alves; Almeida, Gabriela Brito; Lins, Paulo Manoel Pontes; Tavares, Marley Mendonça; Farias, Samuel C. Cohen; Queiroz, Sonia C. N. (2022-12-01). "Study of insecticide translocation in coconut palm trees after using pressurized endotherapy". Analytical Methods. 14 (46): 4851–4860. doi:10.1039/D2AY01328B. ISSN   1759-9679.
  26. Ferreira, Jordana Alves; Fassoni, Artur César; Ferreira, Joana Maria Santos; Lins, Paulo Manoel Pontes; Bottoli, Carla Beatriz Grespan (December 2022). "Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling". Horticulturae. 8 (12): 1099. doi: 10.3390/horticulturae8121099 . ISSN   2311-7524.
  27. VanWoerkom, A.H.; Aćimović, S.G.; Sundin, G.W.; Cregg, B.M.; Mota-Sanchez, D.; Vandervoort, C.; Wise, J.C. (2014). "Trunk injection: An alternative technique for pesticide delivery in apples". Crop Protection. 65: 173–185. doi:10.1016/j.cropro.2014.05.017.
  28. Aćimović, S. G.; Zeng, Q.; McGhee, G. C.; Wise, J. C.; Sundin, G. W. (2013). "Control of fire blight (Erwinia amylovora) with trunk injection of the maximum seasonally allowed doses of SAR inducers and antibiotics in apple trees". Phytopathology. 103 (Suppl. 2): S21–S2169. doi:10.1094/PHYTO-103-6-S2.1. PMID   23676108.
  29. Düker, A.; Kubiak, R. (2011). "Stem injection of triazoles for the protection of Vitis vinifera L. ('Riesling') against powdery mildew (Uncinula necator)" (PDF). Vitis. 50 (2): 73–79. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-12-08.
  30. Düker, A.; Kubiak, R. (2009). "Stem application of metalaxyl for the protection of Vitis vinifera L. ('Riesling') leaves and grapes against downy mildew (Plasmopara viticola)" (PDF). Vitis. 48 (1): 43–48. Archived from the original (PDF) on 2015-01-21. Retrieved 2014-12-08.
  31. Jamar, L.; Cavelier, M.; Lateur, M. (2010). "Primary scab control using a "during-infection" spray timing and the effect on fruit quality and yield in organic apple production" (PDF). Biotechnologie, Agronomie, Société et Environnement. 14 (3): 423–439.
  32. Holb, I. J.; Heijne, B.; Withagen, J. C.; Gáll, J. M.; Jeger, M. J. (2005). "Analysis of summer epidemic progress of apple scab at different apple production systems in the Netherlands and Hungary". Phytopathology. 95 (9): 1001–20. doi:10.1094/phyto-95-1001. PMID   18943298. S2CID   39268216.
  33. Pimentel, D.; Levitan, L. (1986). "Pesticides: Amounts Applied and Amounts Reaching Pests". BioScience. 36 (2): 86–91. doi:10.2307/1310108. JSTOR   1310108.
  34. Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D'Amore, M. (1992). "Environmental and Economic Costs of Pesticide Use". BioScience. 42 (10): 750–760. doi:10.2307/1311994. JSTOR   1311994.
  35. Düker, A.; Kubiak, R.; Höfer, V. (2006). Stem application of plant protective agents in viticulture. Aachen, Germany: Shaker Verlag GmbH. ISBN   9783832248161.
  36. Aćimović, S. G. (2014). Disease Management in Apples Using Trunk Injection Delivery of Plant Protective Compounds. East Lansing, MI, USA: Michigan State University. p. 362.
  37. Aćimović, S. G.; Wise, J. C.; Cregg, B. M. "Trunk Injection: How To Improve The Efficiency of Injected Compounds In Trees". Michigan Nursery and Landscape Association. Retrieved 9 October 2014.
  38. Mota-Sanchez, D.; Cregg, B. M.; McCullough, D. G.; Poland, T. M.; Hollingworth, R. M. (2009). "Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults". Crop Protection. 28 (8): 655–661. doi:10.1016/j.cropro.2009.03.012.
  39. Doccola, J. J.; Hascher, W.; Aiken, J. J.; Wild, P. M. (2012). "Treatment Strategies Using Imidacloprid in Hemlock Woolly Adelgid (Adelges tsugae Annand) Infested Eastern Hemlock (Tsuga canadensis Carrière) Trees". Arboriculture & Urban Forestry. 38 (2): 41–49. doi: 10.48044/jauf.2012.008 . S2CID   202625650.