Uncinula necator

Last updated

Uncinula necator
UncinulaNecatorOnGrapes.jpg
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Species:
U. necator
Binomial name
Uncinula necator
(Schwein.) Burrill
Synonyms

Erysiphe necator Schwein. (1834)

Uncinula necator (syn. Erysiphe necator) is a fungus that causes powdery mildew of grape. It is a common pathogen of Vitis species, including the wine grape, Vitis vinifera. The fungus is believed to have originated in North America. European varieties of Vitis vinifera are more or less susceptible to this fungus. Uncinula necator infects all green tissue on the grapevine, including leaves and young berries. It can cause crop loss and poor wine quality if untreated. The sexual stage of this pathogen requires free moisture to release ascospores from its cleistothecia in the spring. However, free moisture is not needed for secondary spread via conidia; high atmospheric humidity is sufficient. Its anamorph is called Oidium tuckeri.

Contents

It produces common odors such as 1-octen-3-one and (Z)-1,5-octadien-3-one. [1]

This mildew can be treated with sulfur or fungicides; however resistance to several chemical classes such as Benomyl, the DMIs, and Strobilurins has developed. While synthetic fungicides are often recommended as applications around bloom, it is common to include sulfur in a tank mix to help with resistance management.

Summary

Powdery mildews are generally host-specific, and powdery mildew of grape is caused by a host-specific pathogen named Uncinula necator. Powdery mildew is a polycylic disease that thrives in warm, moist environments. Its symptoms are widely recognizable and include gray-white fungal growth on the surface of infected plants. A sulfur formulation, fungicides, and limiting the environmental factors that favor the growth of powdery mildews are all practices that can stall and/or halt its growth. [2]

Hosts and symptoms

Powdery mildews are generally host-specific. Uncinula necator is the pathogen that causes powdery mildew on grape. The most susceptible hosts of this pathogen are members of the genus Vitis. The signs of powdery mildews are widely recognizable and easily identifiable. The majority of them can be found on the upper sides of the leaves; however, it can also infect the bottom sides, buds, flowers, young fruit, and young stems. A gray-white, dusty, fungal growth consisting of mycelia, conidia and conidiophores coat much of the infected plant. Chasmothecia, which are the overwintering structures, present themselves as tiny, spherical fruiting structures that go from white, to yellowish-brown to black in color, and are about the size of the head of a pin. Symptoms that occur as a result of the infection include necrosis, stunting, leaf curling, and a decrease in quality of the fruit produced. [2]

Disease cycle

Powdery mildew is a polycyclic disease (one which produces a secondary inoculum) that initially infects the leaf surface with primary inoculum, which is conidia from mycelium, or secondary inoculum, which is an overwintering structure called a chasmothecium. When the disease begins to develop, it looks like a white powdery substance.

The primary inoculum process begins with an ascogonium (female) and antheridium (male) joining to produce an offspring. This offspring, a young chasmothecium, is used to infect the host immediately or overwinter on the host to infect when the timing is right (typically in spring). To infect, it produces a conidiophore that then bears conidia. These conidia move along to a susceptible surface to germinate. Once these spores germinate, they produce a structure called a haustoria, capable of "sucking" nutrients from the plant cells directly under the epidermis of the leaf. At this point, the fungi can infect leaves, buds and twigs that then reinfect other plants or further infect the current host. From this point, you see more white powdery signs of powdery mildew, and these structures produce secondary inoculum to reinfect the host with mycelium and conidia, or use the mycelium to produce primary inoculum to another plant.

For germination to occur using a chasmothecium, the chasmothecium must be exposed to the right environmental conditions to rupture the structure to thereby release spores in hope that they'll germinate. Germination of conidia occurs at temperatures between 7 and 31 °C and is inhibited above 33 °C. Germination is greatest at 30–100% relative humidity. [2]

Environment

Powdery Mildew thrives in warm, moist environments and infects younger plant tissues like fruit, leaves, and green stems and buds. Free water can disrupt conidia and only requires a humid microclimate for infection. [3] Most infection begins when spring rain (2.5mm) falls and temperatures are approximately 15 °C or higher. Rates of infection decline at temperatures higher than 30 °C, since the evaporation of water occurs readily. Cooler conditions, such as shading and poor aeration, promote infection due to a higher relative humidity, optimally 85% or greater. However, sporulation does occur at levels as low as 40%. Spores are dispersed mostly by wind and rain splash.

Young underdeveloped tissues are most susceptible to infection, primarily leaves and fruit. Warmer weather cultivars of Vitis vinifera and French hybrids provide overwintering protection in buds and during moderate winters climates. American cultivars are generally less susceptible to infection unless an unusually warm winter does not kill the chasmothecia in buds. Most chasmothecia survive on the vine where ample protection is provided in the bark. [4]

Management

First and foremost, limiting environmental factors that promote infection are key to managing powdery mildew on grapes. Optimal sites feature full sun on all grape structures and ample aeration to reduce humid microclimates under shading leaves. Pruning vines and clusters and planting on a gentle slope and orienting in rows running North and South promote full sun and aeration. Dusting leaves and berries with lime and sulfur was effective in the 1850s during the epidemic in Europe. [2]

Current organic agricultural practices still use a sulfur formulation as a treatment for powdery mildew. However, some cultivars like Concord are susceptible to phytotoxic damage with sulfur use. [4] Since the fungus grows on tissue surfaces rather than inside epithelial cells, topical applications of oils and other compounds are recommended. Integrated pest management programs are utilized by organic and conventional agriculture systems, while the latter prescribes the addition of fungicides.

Typical applications of fungicides occur during prebloom and for 2–4 weeks post bloom. If the previous year was a conducive environment for infection or the current year had a warm winter, earlier sprays are recommended due to a potentially higher amount of overwintered chasmothecia. If warm and humid, conidia are produced every 5–7 days throughout the growing season. To limit powdery mildew resistance, growers alternate treatments by employing multiple modes of action.

Importance

The disease affects grapes worldwide, leaving all agricultural grape businesses at risk of Uncinula necator. Powdery mildew of grape affects the size of the vines, the total yield of fruit, as well as affecting the taste of wine produced from infected grapes. The disease can also cause the blossoms to fall and result in failure to produce fruit. [5]

Related Research Articles

<span class="mw-page-title-main">Powdery mildew</span> Fungal plant disease

Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of ascomycete fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as its symptoms are quite distinctive. Infected plants display white powdery spots on the leaves and stems. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.

<span class="mw-page-title-main">Black rot (grape disease)</span> Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

<i>Blumeria graminis</i> Fungal pathogen of wheat, barley, rye...

Blumeria graminis is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and Oidium monilioides or Oidium tritici.

<span class="mw-page-title-main">Phomopsis cane and leaf spot</span> Fungal plant disease

Phomopsis cane and leaf spot occurs wherever grapes are grown. Phomopsis cane and leaf spot is more severe in grape-growing regions characterized by a humid temperate climate through the growing season. Crop losses up to 30% have been reported to be caused by Phomopsis cane and leaf spot.

<i>Erysiphe cruciferarum</i> Species of fungus

Erysiphe cruciferarum is a plant pathogen of the family Erysiphaceae, which causes the main powdery mildew of crucifers, including on Brassica crops, such as cauliflower, cabbage, broccoli, and Brussels sprouts. E. cruciferarum is distributed worldwide, and is of particular concentration in continental Europe and the Indian subcontinent. E. cruciferarum is an ascomycete fungus that has both sexual and asexual stages. It is also an obligate parasite that appears to have host specificity; for example, isolates from turnip will not infect Brussels sprout, and vice versa. While being a part of the family Erysiphaceae, it belongs to those members in which the conidia are formed singly and whose haustoria are multilobed.

Leptosphaeria coniothyrium is a plant pathogen. It can be found around the world.

<i>Leveillula taurica</i> Species of fungus

Leveillula taurica is an obligate fungal pathogen, from the phylum Ascomycota, which causes powdery mildew on onion. This disease prefers warm, dry environments. It is rare in the United States, and is currently restricted to western states. Globally, it is also a minor problem with limited occurrences in the Middle East, Europe, and South America. L. taurica causes powdery mildew of onions, but is also known to infect other allium, solanaceous, and cucurbit species. The disease has appeared in parts of the Middle East, the Mediterranean, and South and North America. Currently, it is not a cause for major concern in the U.S. and throughout the world, as its geographic extent is sparse. In addition, it is relatively easy to control through basic sanitation and reducing water stress.

<i>Podosphaera leucotricha</i> Species of fungus

Podosphaera leucotricha is a plant pathogen that can cause powdery mildew of apples and pears.

<i>Podosphaera macularis</i> Species of fungus

Podosphaera macularis is a plant pathogen infecting several hosts including chamomile, caneberrie, strawberries, hop, hemp and Cineraria. It causes powdery mildew of hops.

<i>Podosphaera pannosa</i> Species of fungus

Podosphaera pannosa is a plant pathogen. It produces a powdery mildew on members of the rose family.

<i>Peronospora manshurica</i> Species of single-celled organism

Peronospora manshurica is a plant pathogen. It is a widespread disease on the leaves of soybeans and other crop plants. The fungi is commonly referred to as downy mildew, "leafspot", or "leaf-spot".

<i>Plasmopara viticola</i> Species of single-celled organism

Plasmopara viticola, the causal agent of grapevine downy mildew, is a heterothallic oomycete that overwinters as oospores in leaf litter and soil. In the spring, oospores germinate to produce macrosporangia, which under wet condition release zoospores. Zoospores are splashed by rain into the canopy, where they swim to and infect through stomata. After 7–10 days, yellow lesions appear on foliage. During favorable weather the lesions sporulate and new secondary infections occur.

Erysiphe heraclei is a plant pathogen that causes powdery mildew on several species including dill, carrot and parsley.

<i>Oidium mangiferae</i> Species of fungus

Oidium mangiferae is a plant pathogen that infects mango trees causing powdery mildew. Powdery mildew of mango is an Ascomycete pathogen of the Erysiphales family that was initially described by Berthet in 1914, using samples collected from Brazil. O. mangiferae is found in all areas where mangoes have been raised long term, but is particularly widespread in India where both the host and the pathogen are native. Currently no teleomorph stage has been identified, but due to certain morphological characteristics it has been suggested that O. mangiferae belongs in the Erysiphe polygony group. Mango is the only known host for this pathogen, though O. mangiferae appears to be identical to fungi responsible for powdery mildew diseases on various other plant species, particularly oak, though some differences may be observed. In particular, the number of cells in conidiophores varies from 2 on mango to 3-5 on oak. O. mangiferae has been known to infect oak leaves in the laboratory, however due to the lack of a known teleomorph stage O. mangiferae is still considered to only be a pathogen of mango. Recent analysis of its ribosomal DNA suggests it is conspecific with Erysiphe alphitoides, the causative agent of powdery mildew in European oaks.

<i>Podosphaera fuliginea</i> Species of fungus

Podosphaera fuliginea is a plant pathogen that causes powdery mildew on cucurbits. Podosphaera fuliginea and Erysiphe cichoracearum are the two most commonly recorded fungi causing cucurbit powdery mildew. In the past, Erysiphe cichoracearum was considered to be the primary causal organism throughout most of the world. Today, Podosphaera fuliginea is more commonly reported.

Peronosclerospora sorghi is a plant pathogen. It is the causal agent of sorghum downy mildew. The pathogen is a fungal-like protist in the oomycota, or water mold, class. Peronosclerospora sorghi infects susceptible plants though sexual oospores, which survive in the soil, and asexual sporangia which are disseminated by wind. Symptoms of sorghum downy mildew include chlorosis, shredding of leaves, and death. Peronosclerospora sorghi infects maize and sorghum around the world, but causes the most severe yield reductions in Africa. The disease is controlled mainly through genetic resistance, chemical control, crop rotation, and strategic timing of planting.

<i>Elsinoë ampelina</i> Species of fungus

Elsinoë ampelina is a plant pathogen, which is the causal agent of anthracnose on grape.

<i>Dibotryon morbosum</i> Species of fungus

Dibotryon morbosum or Apiosporina morbosa is a plant pathogen, which is the causal agent of black knot. It affects members of the Prunus genus such as; cherry, plum, apricot, and chokecherry trees in North America. The disease produces rough, black growths that encircle and kill the infested parts, and provide habitat for insects.

Cladosporium fulvum is an Ascomycete called Passalora fulva, a non-obligate pathogen that causes the disease on tomatoes known as the tomato leaf mold. P. fulva only attacks tomato plants, especially the foliage, and it is a common disease in greenhouses, but can also occur in the field. The pathogen is likely to grow in humid and cool conditions. In greenhouses, this disease causes big problems during the fall, in the early winter and spring, due to the high relative humidity of air and the temperature, that are propitious for the leaf mold development. This disease was first described in the North Carolina, by Mordecai Cubitt Cooke (1883), on cultivated tomato, although it is originally from South and Central America. The causal fungus of tomato leaf mold may also be referred to as Cladosporium fulvum, a former name.

<i>Golovinomyces orontii</i> Species of fungus

Golovinomyces orontii is a species of fungus that causes powdery mildew disease and it is in the family Erysiphaceae. It is an obligate biotroph that infects plants in several families including Acanthaceae, Asteraceae, Brassicaceae, Cucurbitaceae, and Lamiaceae.

References

  1. Darriet P, Pons M, Henry R, et al. (May 2002). "Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); incidence of enzymatic activities of the yeast Saccharomyces cerevisiae". J. Agric. Food Chem. 50 (11): 3277–82. doi:10.1021/jf011527d. PMID   12009998.
  2. 1 2 3 4 Agrios, George, N. Plant Pathology Edition 5. Elsevier Academic Press, 2005. p. 451.
  3. Hartman, John, and Julie Beale. "Powdery Mildew of Grape." University of Kentucky Cooperative Extensions, 2008. Web. 8 December 2010.
  4. 1 2 Wilcox, Wayne F. "Grapevine Powdery Mildew." Cornell Cooperative Extension, Sept. 2003. Web. 15 November 2010.
  5. Bayer CropScience. "Crop Compendium". www.compendium.bayercropscience.com