Trinomial triangle

Last updated

The trinomial triangle is a variation of Pascal's triangle. The difference between the two is that an entry in the trinomial triangle is the sum of the three (rather than the two in Pascal's triangle) entries above it:

Contents

The -th entry of the -th row is denoted by

.

Rows are counted starting from 0. The entries of the -th row are indexed starting with from the left, and the middle entry has index 0. The symmetry of the entries of a row about the middle entry is expressed by the relationship

Properties

The -th row corresponds to the coefficients in the polynomial expansion of the expansion of the trinomial raised to the -th power: [1]

or, symmetrically,

,

hence the alternative name trinomial coefficients because of their relationship to the multinomial coefficients:

Furthermore, the diagonals have interesting properties, such as their relationship to the triangular numbers.

The sum of the elements of -th row is .

Recurrence formula

The trinomial coefficients can be generated using the following recurrence formula: [1]

,
for ,

where for and .

Central trinomial coefficients

The middle entries of the trinomial triangle

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, … (sequence A002426 in the OEIS )

were studied by Euler and are known as central trinomial coefficients.

The -th central trinomial coefficient is given by

Their generating function is [2]

Euler noted the following exemplum memorabile inductionis fallacis ("notable example of fallacious induction"):

for ,

where is the n-th Fibonacci number. For larger , however, this relationship is incorrect. George Andrews explained this fallacy using the general identity [3]

Applications

In chess

Chess x1d45.svg Chess x3l45.svg Chess x6d45.svg Chess x7l45.svg Chess x6d45.svg Chess x3l45.svg Chess x1d45.svg
Chess x3l45.svg Chess x1d45.svg Chess x2l45.svg Chess x3d45.svg Chess x2l45.svg Chess x1d45.svg Chess x3l45.svg
Chess x6d45.svg Chess x2l45.svg Chess x1d45.svg Chess x1l45.svg Chess x1d45.svg Chess x2l45.svg Chess x6d45.svg
Chess x7l45.svg Chess x3d45.svg Chess x1l45.svg Chess kld45.svg Chess x1l45.svg Chess x3d45.svg Chess x7l45.svg
Chess x6d45.svg Chess x2l45.svg Chess x1d45.svg Chess x1l45.svg Chess x1d45.svg Chess x2l45.svg Chess x6d45.svg
Chess x3l45.svg Chess x1d45.svg Chess x2l45.svg Chess x3d45.svg Chess x2l45.svg Chess x1d45.svg Chess x3l45.svg
Chess x1d45.svg Chess x3l45.svg Chess x6d45.svg Chess x7l45.svg Chess x6d45.svg Chess x3l45.svg Chess x1d45.svg
Number of ways to reach a cell with the minimum number of moves

The triangle corresponds to the number of possible paths that can be taken by the king in a game of chess. The entry in a cell represents the number of different paths (using a minimum number of moves) the king can take to reach the cell.

In combinatorics

The coefficient of in the expansion of gives the number of different ways to draw cards from two identical sets of playing cards each. [4] For example, from two sets of the three cards A, B, C, the different drawings are:

Number of selected cardsNumber of optionsOptions
01
13A, B, C
26AA, AB, AC, BB, BC, CC
37AAB, AAC, ABB, ABC, ACC, BBC, BCC
46AABB, AABC, AACC, ABBC, ABCC, BBCC
53AABBC, AABCC, ABBCC
61AABBCC

For example,

.

In particular, this provides the formula for the number of different hands in the card game Doppelkopf .

Alternatively, it is also possible to arrive at this expression by considering the number of ways of choosing pairs of identical cards from the two sets, which is the binomial coefficient . The remaining cards can then be chosen in ways, [4] which can be written in terms of the binomial coefficients as

.

The example above corresponds to the three ways of selecting two cards without pairs of identical cards (AB, AC, BC) and the three ways of selecting a pair of identical cards (AA, BB, CC).

Related Research Articles

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. This is essentially the Markov partition. The term shift is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem shows that Bernoulli shifts are isomorphic when their entropy is equal.

In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space and any signed measure defined on the -algebra , there exist two -measurable sets, and , of such that:

  1. and .
  2. For every such that , one has , i.e., is a positive set for .
  3. For every such that , one has , i.e., is a negative set for .

In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in n variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials.

Noncentral <i>t</i>-distribution Probability distribution

The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter. Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false. This leads to its use in statistics, especially calculating statistical power. The noncentral t-distribution is also known as the singly noncentral t-distribution, and in addition to its primary use in statistical inference, is also used in robust modeling for data.

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

In mathematics, the Wasserstein distance or Kantorovich–Rubinstein metric is a distance function defined between probability distributions on a given metric space . It is named after Leonid Vaseršteĭn.

In mathematics, the symbol of a linear differential operator is a polynomial representing a differential operator, which is obtained, roughly speaking, by replacing each partial derivative by a new variable. The symbol of a differential operator has broad applications to Fourier analysis. In particular, in this connection it leads to the notion of a pseudo-differential operator. The highest-order terms of the symbol, known as the principal symbol, almost completely controls the qualitative behavior of solutions of a partial differential equation. Linear elliptic partial differential equations can be characterized as those whose principal symbol is nowhere zero. In the study of hyperbolic and parabolic partial differential equations, zeros of the principal symbol correspond to the characteristics of the partial differential equation. Consequently, the symbol is often fundamental for the solution of such equations, and is one of the main computational devices used to study their singularities.

In mathematics, the Littlewood–Richardson rule is a combinatorial description of the coefficients that arise when decomposing a product of two Schur functions as a linear combination of other Schur functions. These coefficients are natural numbers, which the Littlewood–Richardson rule describes as counting certain skew tableaux. They occur in many other mathematical contexts, for instance as multiplicity in the decomposition of tensor products of finite-dimensional representations of general linear groups, or in the decomposition of certain induced representations in the representation theory of the symmetric group, or in the area of algebraic combinatorics dealing with Young tableaux and symmetric polynomials.

In mathematics, the Robinson–Schensted–Knuth correspondence, also referred to as the RSK correspondence or RSK algorithm, is a combinatorial bijection between matrices A with non-negative integer entries and pairs (P,Q) of semistandard Young tableaux of equal shape, whose size equals the sum of the entries of A. More precisely the weight of P is given by the column sums of A, and the weight of Q by its row sums. It is a generalization of the Robinson–Schensted correspondence, in the sense that taking A to be a permutation matrix, the pair (P,Q) will be the pair of standard tableaux associated to the permutation under the Robinson–Schensted correspondence.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean. Its calculation does not require any knowledge of the form of the underlying distribution—hence the name nonparametric. It has some desirable properties: it is zero for any symmetric distribution; it is unaffected by a scale shift; and it reveals either left- or right-skewness equally well. In some statistical samples it has been shown to be less powerful than the usual measures of skewness in detecting departures of the population from normality.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.

In mathematics, Wiener's lemma is a well-known identity which relates the asymptotic behaviour of the Fourier coefficients of a Borel measure on the circle to its atomic part. This result admits an analogous statement for measures on the real line. It was first discovered by Norbert Wiener.

<span class="mw-page-title-main">Representations of classical Lie groups</span>

In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are

References

  1. 1 2 Weisstein, Eric W. "Trinominal Coefficient". MathWorld .
  2. Weisstein, Eric W. "Central Trinomial Coefficient". MathWorld .
  3. George Andrews, Three Aspects for Partitions. Séminaire Lotharingien de Combinatoire, B25f (1990) Online copy
  4. 1 2 Andreas Stiller: Pärchenmathematik. Trinomiale und Doppelkopf. ("Pair mathematics. Trinomials and the game of Doppelkopf"). c't Issue 10/2005, p. 181ff

Further reading