Tropical Cyclone Heat Potential

Last updated

Tropical Cyclone Heat Potential (TCHP) is one of such non-conventional oceanographic parameters influencing the tropical cyclone intensity. [1] [2] The relationship between Sea Surface Temperature (SST) and cyclone intensity has been long studied in statistical intensity prediction schemes such as the National Hurricane Center Statistical Hurricane Intensity Prediction Scheme (SHIPS) [3] [4] and Statistical Typhoon Intensity Prediction Scheme (STIPS). [5] STIPS is run at the Naval Research Laboratory in Monterey, California, and is provided to Joint Typhoon Warning Centre (JTWC) to make cyclone intensity forecasts in the western North Pacific, South Pacific, and Indian Oceans. In most of the cyclone models, SST is the only oceanographic parameter representing heat exchange. However, cyclones have long been known to interact with the deeper layers of ocean rather than sea surface alone. [6] Using a coupled ocean atmospheric model, Mao et al., [7] concluded that the rate of intensification and final intensity of cyclone were sensitive to the initial spatial distribution of the mixed layer rather than to SST alone. Similarly, Namias and Canyan [8] observed patterns of lower atmospheric anomalies being more consistent with the upper ocean thermal structure variability than SST.  

Related Research Articles

<span class="mw-page-title-main">Subtropical cyclone</span> Cyclonic storm with both tropical and extratropical characteristics

A subtropical cyclone is a weather system that has some characteristics of both tropical and an extratropical cyclone.

<span class="mw-page-title-main">National Hurricane Center</span> Division of the United States National Weather Service

The National Hurricane Center (NHC) is the division of the United States' NOAA/National Weather Service responsible for tracking and predicting tropical weather systems between the Prime Meridian and the 140th meridian west poleward to the 30th parallel north in the northeast Pacific Ocean and the 31st parallel north in the northern Atlantic Ocean. The agency, which is co-located with the Miami branch of the National Weather Service, is situated on the campus of Florida International University in Westchester, Florida.

<span class="mw-page-title-main">Numerical weather prediction</span> Weather prediction using mathematical models of the atmosphere and oceans

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

<span class="mw-page-title-main">Annular tropical cyclone</span> Tropical cyclone with a symmetrical shape

An annular tropical cyclone is a tropical cyclone that features a normal to large, symmetric eye surrounded by a thick and uniform ring of intense convection, often having a relative lack of discrete rainbands, and bearing a symmetric appearance in general. As a result, the appearance of an annular tropical cyclone can be referred to as akin to a tire or doughnut. Annular characteristics can be attained as tropical cyclones intensify; however, outside the processes that drive the transition from asymmetric systems to annular systems and the abnormal resistance to negative environmental factors found in storms with annular features, annular tropical cyclones behave similarly to asymmetric storms. Most research related to annular tropical cyclones is limited to satellite imagery and aircraft reconnaissance as the conditions thought to give rise to annular characteristics normally occur over open water, well removed from landmasses where surface observations are possible.

<span class="mw-page-title-main">Pacific hurricane</span> Mature tropical cyclone that develops within the eastern and central Pacific Ocean

A Pacific hurricane is a tropical cyclone that develops within the northeastern and central Pacific Ocean to the east of 180°W, north of the equator. For tropical cyclone warning purposes, the northern Pacific is divided into three regions: the eastern, central, and western, while the southern Pacific is divided into 2 sections, the Australian region and the southern Pacific basin between 160°E and 120°W. Identical phenomena in the western north Pacific are called typhoons. This separation between the two basins has a practical convenience, however, as tropical cyclones rarely form in the central north Pacific due to high vertical wind shear, and few cross the dateline.

<span class="mw-page-title-main">QuikSCAT</span> Earth observation satellite

The NASA QuikSCAT was an Earth observation satellite carrying the SeaWinds scatterometer. Its primary mission was to measure the surface wind speed and direction over the ice-free global oceans via its effect on water waves. Observations from QuikSCAT had a wide array of applications, and contributed to climatological studies, weather forecasting, meteorology, oceanographic research, marine safety, commercial fishing, tracking large icebergs, and studies of land and sea ice, among others. This SeaWinds scatterometer is referred to as the QuikSCAT scatterometer to distinguish it from the nearly identical SeaWinds scatterometer flown on the ADEOS-2 satellite.

<span class="mw-page-title-main">Tropical cyclone forecast model</span> Computer program that uses meteorological data to forecast tropical cyclones

A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem.

<span class="mw-page-title-main">Rapid intensification</span> Situation in which a tropical cyclone strongly intensifies in a short time

In meteorology, rapid intensification is a situation where a tropical cyclone intensifies dramatically in a short period of time. The United States National Hurricane Center defines rapid intensification as an increase in the maximum sustained winds of a tropical cyclone of at least 30 knots in a 24-hour period.

<span class="mw-page-title-main">James Franklin (meteorologist)</span> Former weather forecaster with NOAA

James Louis Franklin is a former weather forecaster encompassing a 35-year career with National Oceanic and Atmospheric Administration (NOAA). He served as the first branch chief of the newly formed Hurricane Specialist Unit (HSU) before his retirement in 2017.

<span class="mw-page-title-main">Dvorak technique</span> Subjective technique to estimate tropical cyclone intensity

The Dvorak technique is a widely used system to estimate tropical cyclone intensity based solely on visible and infrared satellite images. Within the Dvorak satellite strength estimate for tropical cyclones, there are several visual patterns that a cyclone may take on which define the upper and lower bounds on its intensity. The primary patterns used are curved band pattern (T1.0-T4.5), shear pattern (T1.5–T3.5), central dense overcast (CDO) pattern (T2.5–T5.0), central cold cover (CCC) pattern, banding eye pattern (T4.0–T4.5), and eye pattern (T4.5–T8.0).

<span class="mw-page-title-main">Tropical cyclogenesis</span> Development and strengthening of a tropical cyclone in the atmosphere

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

<span class="mw-page-title-main">Tropical cyclone</span> Rapidly rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, or simply cyclone. A hurricane is a strong tropical cyclone that occurs in the Atlantic Ocean or northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean. In the Indian Ocean, South Pacific, or (rarely) South Atlantic, comparable storms are referred to as "tropical cyclones", and such storms in the Indian Ocean can also be called "severe cyclonic storms".

<span class="mw-page-title-main">Tropical cyclone forecasting</span> Science of forecasting how a tropical cyclone moves and its effects

Tropical cyclone forecasting is the science of forecasting where a tropical cyclone's center, and its effects, are expected to be at some point in the future. There are several elements to tropical cyclone forecasting: track forecasting, intensity forecasting, rainfall forecasting, storm surge, tornado, and seasonal forecasting. While skill is increasing in regard to track forecasting, intensity forecasting skill remains unchanged over the past several years. Seasonal forecasting began in the 1980s in the Atlantic basin and has spread into other basins in the years since.

The Hurricane Databases (HURDAT), managed by the National Hurricane Center, are two separate databases that contain details on tropical cyclones, that have occurred within the Atlantic Ocean and Eastern Pacific Ocean since 1851 and 1949 respectively.

<span class="mw-page-title-main">Cold-core low</span> Cyclone with an associated cold pool of air at high altitude

A cold-core low, also known as an upper level low or cold-core cyclone, is a cyclone aloft which has an associated cold pool of air residing at high altitude within the Earth's troposphere, without a frontal structure. It is a low pressure system that strengthens with height in accordance with the thermal wind relationship. If a weak surface circulation forms in response to such a feature at subtropical latitudes of the eastern north Pacific or north Indian oceans, it is called a subtropical cyclone. Cloud cover and rainfall mainly occurs with these systems during the day.

<span class="mw-page-title-main">History of Atlantic hurricane warnings</span> Aspect of meteorological history

The history of Atlantic tropical cyclone warnings details the progress of tropical cyclone warnings in the North Atlantic Ocean. The first service was set up in the 1870s from Cuba with the work of Father Benito Viñes. After his death, hurricane warning services were assumed by the US Army Signal Corps and United States Weather Bureau over the next few decades, first based in Jamaica and Cuba before shifting to Washington, D.C. The central office in Washington, which would evolve into the National Meteorological Center and the Weather Prediction Center, assumed the responsibilities by the early 20th century. This responsibility passed to regional hurricane offices in 1935, and the concept of the Atlantic hurricane season was established to keep a vigilant lookout for tropical cyclones during certain times of the year. Hurricane advisories issued every 12 hours by the regional hurricane offices began at this time.

<span class="mw-page-title-main">Automated Tropical Cyclone Forecasting System</span> Software used to predict and forecast tropical cyclogenesis and to track tropical cyclones

The Automated Tropical Cyclone Forecasting System (ATCF) is a piece of software originally developed to run on a personal computer for the Joint Typhoon Warning Center (JTWC) in 1988, and the National Hurricane Center (NHC) in 1990. ATCF remains the main piece of forecasting software used for the United States Government, including the JTWC, NHC, and Central Pacific Hurricane Center. Other tropical cyclone centers in Australia and Canada developed similar software in the 1990s. The data files with ATCF lie within three decks, known as the a-, b-, and f-decks. The a-decks include forecast information, the b-decks contain a history of center fixes at synoptic hours, and the f-decks include the various fixes made by various analysis center at various times. In the years since its introduction, it has been adapted to Unix and Linux platforms.

<span class="mw-page-title-main">Tropical cyclone tracking chart</span> Chart used in plotting tropical cyclone tracks

A tropical cyclone tracking chart is used by those within hurricane-threatened areas to track tropical cyclones worldwide. In the north Atlantic basin, they are known as hurricane tracking charts. New tropical cyclone information is available at least every six hours in the Northern Hemisphere and at least every twelve hours in the Southern Hemisphere. Charts include maps of the areas where tropical cyclones form and track within the various basins, include name lists for the year, basin-specific tropical cyclone definitions, rules of thumb for hurricane preparedness, emergency contact information, and numbers for figuring out where tropical cyclone shelters are open.

References

  1. Mainelli, Michelle; DeMaria, Mark; Shay, Lynn K.; Goni, Gustavo (2008-02-01). "Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes". Weather and Forecasting. 23 (1): 3–16. Bibcode:2008WtFor..23....3M. doi: 10.1175/2007WAF2006111.1 . ISSN   0882-8156.
  2. Shay, Lynn K.; Brewster, Jodi K. (2010-06-01). "Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting". Monthly Weather Review. 138 (6): 2110–2131. Bibcode:2010MWRv..138.2110S. doi:10.1175/2010MWR3189.1. ISSN   0027-0644. S2CID   17361911.
  3. DeMaria, Mark; Kaplan, John (1994-06-01). "A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin". Weather and Forecasting. 9 (2): 209–220. doi: 10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2 . ISSN   0882-8156.
  4. DeMaria, Mark; Mainelli, Michelle; Shay, Lynn K.; Knaff, John A.; Kaplan, John (2005-08-01). "Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS)". Weather and Forecasting. 20 (4): 531–543. Bibcode:2005WtFor..20..531D. doi: 10.1175/WAF862.1 . ISSN   0882-8156.
  5. Knaff, John A.; Sampson, Charles R.; DeMaria, Mark (2005-08-01). "An Operational Statistical Typhoon Intensity Prediction Scheme for the Western North Pacific". Weather and Forecasting. 20 (4): 688–699. Bibcode:2005WtFor..20..688K. doi: 10.1175/waf863.1 . ISSN   1520-0434. S2CID   10109308.
  6. Emanuel, Kerry A. (1986-03-01). "An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance". Journal of the Atmospheric Sciences. 43 (6): 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 . ISSN   0022-4928.
  7. Mao, Qi Verfasser (2000). Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. OCLC   1074227873.{{cite book}}: |last= has generic name (help)
  8. Namias, J.; Cayan, D. R. (1981-11-20). "Large-Scale Air-Sea Interactions and Short-Period Climatic Fluctuatioins". Science. 214 (4523): 869–876. Bibcode:1981Sci...214..869N. doi:10.1126/science.214.4523.869. ISSN   0036-8075. PMID   17782430. S2CID   10522169.