# Truck lane restriction

Last updated

Truck lane restriction within transportation traffic engineering, is a factor impacting freeway truck lanes and traffic congestion. In traffic flow theory, intuitively, slow vehicles (e.g. trucks) will cause queues behind them, but how it relates to the kinematic wave theory was not revealed until Newell. [1] Leclercq et al [2] did a complete review of Newell's theory. In addition to the simulation models developed by Laval and Daganzo [3] on the basis of numerical solution methods for Newell's theory to capture the impacts of slow vehicle, Laval [4] also mathematically derived the analytical capacity formulas for bottlenecks caused by single-type of trucks for multi-lane freeway segments.

## Analytical Solution of the Single-type Truck Problem

Laval's solution could be summarized as follows: Assuming a one-lane freeway segment obeying the triangular fundamental diagram defined in the figure to the right with free-flow speed u, wave velocity w and jam density kj. Only one truck type is considered. In this scenario, the normalized capacity I of the freeway segment is given as：

${\displaystyle I={\frac {1}{rHC}}}$

where r is the time-mean proportion of trucks in the traffic stream,C = uwnkj/(w+u)is the capacity of the freeway lane without trucks and H is the expected value of headway between two consecutive trucks at the location where trucks begin to slow down

It can be shown that, by approximating truck arrivals with Poisson processes, the probability density function (PDF) of H is the equation below, in which τ is defined as the clearance time of the queue induced by the slow-moving truck, λ0=rC, λ1=rU and τ=L(w+v)/wv. Note that λ0 and λ1 refer to the mean truck arrival rate at traffic state C or U, respectively. In particular, traffic state D, which corresponds to the downstream of the moving bottleneck, is assumed to be equal to the capacity of the unblocked lanes.

${\displaystyle f_{H}(h)={\begin{cases}\lambda _{1}e^{-h\lambda _{1}},&h\leq \tau \\e^{\tau (\lambda _{0}-\lambda _{1})}\lambda _{0}e^{-h\lambda _{0}},&h>\tau \end{cases}}}$

According to Newell's moving bottleneck theory, we have:

${\displaystyle U=D+({\frac {wvkj}{w+v}})}$

Given all the above information, we can conclude that the average truck headway H is H=(1-e−λ1τ)/(λ1)+(e−λ1τ)/(λ0)

And the above equation gives us all the necessary information to solve the normalized capacity I.

## Related Research Articles

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

In the theory of relativity, four-acceleration is a four-vector that is analogous to classical acceleration. Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge.

A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ (lambda) is a positive rate called the exponential decay constant:

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers; and also the theory in higher dimensions of abelian varieties A having enough endomorphisms in a certain precise sense. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

The Hodrick–Prescott filter is a mathematical tool used in macroeconomics, especially in real business cycle theory, to remove the cyclical component of a time series from raw data. It is used to obtain a smoothed-curve representation of a time series, one that is more sensitive to long-term than to short-term fluctuations. The adjustment of the sensitivity of the trend to short-term fluctuations is achieved by modifying a multiplier . The filter was popularized in the field of economics in the 1990s by economists Robert J. Hodrick and Nobel Memorial Prize winner Edward C. Prescott. However, it was first proposed much earlier by E. T. Whittaker in 1923.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In system analysis, among other fields of study, a linear time-invariant system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = x(t) ∗ h(t) where h(t) is called the system's impulse response and ∗ represents convolution. What's more, there are systematic methods for solving any such system, whereas systems not meeting both properties are generally more difficult to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In physics, Larmor precession is the precession of the magnetic moment of an object about an external magnetic field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,

In mathematics and transportation engineering, traffic flow is the study of interactions between travellers and infrastructure, with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not to arbitrary spin or rotation of the frame.

In actuarial science and applied probability, ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

In mathematics, a Jacobi form is an automorphic form on the Jacobi group, which is the semidirect product of the symplectic group Sp(n;R) and the Heisenberg group . The theory was first systematically studied by Eichler & Zagier (1985).

A traffic bottleneck is a localized disruption of vehicular traffic on a street, road, or highway. As opposed to a traffic jam, a bottleneck is a result of a specific physical condition, often the design of the road, badly timed traffic lights, or sharp curves. They can also be caused by temporary situations, such as vehicular accidents.

The Three-detector problem is a problem in traffic flow theory. Given is a homogeneous freeway and the vehicle counts at two detector stations. We seek the vehicle counts at some intermediate location. The method can be applied to incident detection and diagnosis by comparing the observed and predicted data, so a realistic solution to this problem is important. Newell G.F. proposed a simple method to solve this problem. In Newell's method, one gets the cumulative count curve (N-curve) of any intermediate location just by shifting the N-curves of the upstream and downstream detectors. Newell's method was developed before the variational theory of traffic flow was proposed to deal systematically with vehicle counts. This article shows how Newell's method fits in the context of variational theory.

Laser linewidth is the spectral linewidth of a laser beam.

Vehicular traffic can be either free or congested. Traffic occurs in time and space, i.e., it is a spatiotemporal process. However, usually traffic can be measured only at some road locations. For efficient traffic control and other intelligent transportation systems, the reconstruction of traffic congestion is necessary at all other road locations at which traffic measurements are not available. Traffic congestion can be reconstructed in space and time based on Boris Kerner’s three-phase traffic theory with the use of the ASDA and FOTO models introduced by Kerner. Kerner's three-phase traffic theory and, respectively, the ASDA/FOTO models are based on some common spatiotemporal features of traffic congestion observed in measured traffic data.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.

In quantum mechanics, the Redfield equation is a Markovian master equation that describes the time evolution of the reduced density matrix ρ of a strongly coupled quantum system that is weakly coupled to an environment. The equation is named in honor of Alfred G. Redfield, who first applied it, doing so for nuclear magnetic resonance spectroscopy.

Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form. The term Tau function, or -function, was first used systematically by Mikio Sato and his students in the specific context of the Kadomtsev–Petviashvili equation, and related integrable hierarchies. It is a central ingredient in the theory of solitons. Tau functions also appear as matrix model partition functions in the spectral theory of Random Matrices, and may also serve as generating functions, in the sense of combinatorics and enumerative geometry, especially in relation to moduli spaces of Riemann surfaces, and enumeration of branched coverings, or so-called Hurwitz numbers.

## References

1. Newell, Gordon (1998). "A moving bottleneck". Transportation Research Part B: Methodological. 32 (8): 531–537. doi:10.1016/s0191-2615(98)00007-1.
2. Leclercq, L., Chanut, S., Lesort, J. (2004). "Moving bottlenecks in the LWR model: a unified theory". Transportation Research Record. 1883: 3–13. doi:10.3141/1883-01.CS1 maint: multiple names: authors list (link)
3. Laval, J. A., Daganzo, C. F. (2006). "Lane-changing in traffic streams". Transportation Research Part B: Methodological. 40 (3): 251–264. doi:10.1016/j.trb.2005.04.003.CS1 maint: multiple names: authors list (link)
4. Laval, Jorge (2009). "Effects of Geometric Design on Freeway Capacity: Impacts of Truck Lane Restrictions". Transportation Research Part B: Methodological. 43 (6): 720–728. doi:10.1016/j.trb.2009.01.003.