Truncated triakis icosahedron

Last updated
Truncated triakis icosahedron
Truncated triakis icosahedron.png
Conway notation t10kI = dk10tD
Faces12 decagons
60 pentagons
Edges210
Vertices140
Dual Decakis truncated dodecahedron
Vertex configuration 12 (5.5.5)
60 (5.5.10)
Symmetry group Ih
Properties convex
Conway dk10tD net.png
Net

The truncated triakis icosahedron, or more precisely an order-10 truncated triakis icosahedron , is a convex polyhedron with 72 faces: 10 sets of 3 pentagons arranged in an icosahedral arrangement, with 12 decagons in the gaps.

Contents

Triakis icosahedron

It is constructed from taking a triakis icosahedron by truncating the order-10 vertices. This creates 12 regular decagon faces, and leaves 60 mirror-symmetric pentagons.

Triakisicosahedron.jpg
Triakis icosahedron

Decakis truncated dodecahedron

The dual of the truncated triakis icosahedron is called a decakis truncated dodecahedron. It can be seen as a truncated dodecahedron with decagonal pyramids augmented to the faces.

Polyhedron truncated 12 max.png
Truncated dodecahedron
Conway k10tD.png
Decakis truncated dodecahedron
Conway k10tD net.png
Net

See also


Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

Icosidodecahedron Archimedean solid

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

Truncated icosidodecahedron

In geometry, the truncated icosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Truncated dodecahedron

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

Triakis icosahedron

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated dodecahedron.

Great dodecahedron

In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {5,5/2} and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.

Small stellated dodecahedron a Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

Great stellated dodecahedron

In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

Truncated trapezohedron

An n-gonal truncated trapezohedron is a polyhedron formed by a n-gonal trapezohedron with n-gonal pyramids truncated from its two polar axis vertices. If the polar vertices are completely truncated (diminished), a trapezohedron becomes an antiprism.

Truncated great dodecahedron

In geometry, the truncated great dodecahedron is a nonconvex uniform polyhedron, indexed as U37. It has 24 faces (12 pentagrams and 12 decagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{5,52}.

Truncated great icosahedron

In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,52} or t0,1{3,52} as a truncated great icosahedron.

Chamfered dodecahedron

The chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

Conway polyhedron notation

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

Truncated triakis tetrahedron

The truncated triakis tetrahedron, or more precisely an order-6 truncated triakis tetrahedron, is a convex polyhedron with 16 faces: 4 sets of 3 pentagons arranged in a tetrahedral arrangement, with 4 hexagons in the gaps.

In geometry and polyhedral combinatorics, the Kleetope of a polyhedron or higher-dimensional convex polytope P is another polyhedron or polytope PK formed by replacing each facet of P with a shallow pyramid. Kleetopes are named after Victor Klee.

Hexapentakis truncated icosahedron

The hexapentakis truncated icosahedron is a convex polyhedron constructed as an augmented truncated icosahedron. It is geodesic polyhedron {3,5+}3,0, with pentavalent vertices separated by an edge-direct distance of 3 steps.

Truncated triakis octahedron

The truncated triakis octahedron, or more precisely an order-8 truncated triakis octahedron, is a convex polyhedron with 30 faces: 8 sets of 3 pentagons arranged in an octahedral arrangement, with 6 octagons in the gaps.

Truncated tetrakis cube

The truncated tetrakis cube, or more precisely an order-6 truncated tetrakis cube or hexatruncated tetrakis cube, is a convex polyhedron with 32 faces: 24 sets of 3 bilateral symmetry pentagons arranged in an octahedral arrangement, with 8 regular hexagons in the gaps.