Tunka experiment

Last updated

The Tunka experiment now named TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) measures air showers, which are initiated by charged cosmic rays or high energy gamma rays. TAIGA is situated in Siberia in the Tunka valley close to lake Baikal. Meanwhile, TAIGA consists of five different detector systems: Tunka-133, Tunka-Rex, and Tunka-Grande for charged cosmic rays; Tunka-HiSCORE and Tunka-IACT for gamma astronomy. From the measurements of each detector it is possible to reconstruct the arrival direction, energy and type of the cosmic rays, where the accuracy is enhanced by the combination of different detector systems.

Air shower (physics) shower of particles from a high energy cosmic ray hitting Earths atmosphere

An air shower is an extensive cascade of ionized particles and electromagnetic radiation produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, strikes an atom's nucleus in the air it produces many energetic hadrons. The unstable hadrons decay in the air speedily into other particles and electromagnetic radiation, which are part of the shower components. The secondary radiation rains down, including x-rays, muons, protons, antiprotons, alpha particles, pions, electrons, positrons, and neutrons.

Cosmic ray High-energy particle, mainly originating outside the Solar system

Cosmic rays are a form of high-energy radiation, mainly originating outside the Solar System and even from distant galaxies. Upon impact with the Earth's atmosphere, cosmic rays can produce showers of secondary particles that sometimes reach the surface. Composed primarily of high-energy protons and atomic nuclei, they are originated either from the sun or from outside of our solar system. Data from the Fermi Space Telescope (2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernova explosions of stars. Active galactic nuclei also appear to produce cosmic rays, based on observations of neutrinos and gamma rays from blazar TXS 0506+056 in 2018.

Gamma ray Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, or gamma radiation, is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; he had previously discovered two less penetrating types of decay radiation, which he named alpha rays and beta rays in ascending order of penetrating power.

Contents

The aim of the cosmic-ray measurements is to solve the question of the origin of the cosmic rays in the energy range up to about 1 EeV. Thus, the Tunka experiment explores the same energy range as the KASCADE-Grande cosmic-ray experiment at the Karlsruhe Institute of Technology (KIT) and as the surface detector IceTop of the IceCube experiment at South Pole. However, the first detector of TAIGA, Tunka-133, uses a different and independent measurement technique, which can be used to cross-check the results by the other experiments. For gamma-ray astronomy the aim is to identify sources of higher energy than possible by current gamma-ray observatories.

KASCADE was a European physics experiment started in 1996 at Forschungszentrum Karlsruhe, Germany (now Karlsruher Institut für Technologie), an extensive air shower experiment array to study the cosmic ray primary composition and the hadronic interactions in the energy range of 1016–1018 eV, measuring simultaneously the electronic, muonic and hadronic components.

Karlsruhe Institute of Technology University in Karlsruhe

The Karlsruhe Institute of Technology (KIT) is a public research university and one of the largest research and educational institutions in Germany. KIT was created in 2009 when the University of Karlsruhe, founded in 1825 as a public research university and also known as the "Fridericiana", merged with the Karlsruhe Research Center, which had originally been established in 1956 as a national nuclear research center.

IceCube Neutrino Observatory neutrinodetector in Antartica

The IceCube Neutrino Observatory is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometre.

History

The Tunka experiment started already in the 1990s with a smaller array of 25 photomultiplier detectors. In September 2009 the current array of 133 detectors (Tunka-133) was inaugurated. In October 2011 the size of array was extended by a factor of 4 times by the installation of further, outer photomultiplier detector stations. This aims on the rare cosmic rays at ultra-high energies beyond 0.1 EeV, where a large detection area is important to measure a sufficient amount of cosmic rays. Starting 2012 other detector systems have been installed, first Tunka-Rex and Tunka-HiSCORE in the frame of a Helmholtz-Russia Joint Research Group (HRJRG) running from 2012 to 2015. In 2014 Tunka-Grande was built, and since 2015 the first telescope of Tunka-IACT is under construction. By this the focus of the Tunka experiment had been broadened. It now includes gamma astronomy in addition to cosmic rays which is reflected in the new name TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy).

Tunka-133

Tunka-133 is the first detector of TAIGA. It mainly consists of a 1 km² sized array of 133 photomultipliers, which detect the Cherenkov light of air showers during dark and clear nights. The measurements of Tunka-133 are also used for cross-calibration and comparison of the newer detectors.

A photomultiplier is a device that converts incident photons into an electrical signal.

Cherenkov radiation Electromagnetic phenomenon

Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the phase velocity of light in that medium. The characteristic blue glow of an underwater nuclear reactor is due to Cherenkov radiation. It is named for Soviet physicist Pavel Cherenkov, who shared the 1958 Nobel Prize in Physics for its discovery.

Map of the Tunka-133 experiment in Siberia MapOfTunkaExperiment.jpg
Map of the Tunka-133 experiment in Siberia

Tunka-Rex

Starting with 18 antennas in 2012 Tunka-Rex was successively increased and now consists of 63 antenna stations distributed over the whole area of Tunka-133. By comparison to Tunka-133 it was shown that the radio measurements have the same accuracy for the cosmic-ray energy than the Cherenkov-light measurements. While these Cherenkov-light measurements are possible only during dark and clear nights, the radio measurements are done at any time of the day, which now significantly enhances the duty cycle of the experiment.

Tunka-Grande

Tunka-Grande consists of 19 scintillation stations with an area of 10 m² each from the closed KASCADE-Grande array. These stations measure the particles of the air showers at ground, in particular electrons and muons. All stations are installed in the area of Tunka-133. They are operated simultaneously with the radio antennas of Tunka-Rex, since the combination of both measurement techniques is expected to enhance the accuracy for the composition of the cosmic rays.

Electron subatomic particle with negative electric charge

The electron is a subatomic particle, symbol
e
or
β
, whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron has a mass that is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Muon elementary subatomic particle with negative electric charge

The muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2, but with a much greater mass. It is classified as a lepton. As is the case with other leptons, the muon is not believed to have any sub-structure—that is, it is not thought to be composed of any simpler particles.

right Cosmic-ray detectors of the Tunka experiment (TAIGA): Tunka-133, Tunka-Rex, and Tunka-Grande TAIGAcosmicRayDetectors2016.jpg
right Cosmic-ray detectors of the Tunka experiment (TAIGA): Tunka-133, Tunka-Rex, and Tunka-Grande

Tunka-HiSCORE

Tunka-HiSCORE uses the same detection principle as Tunka-133, but features more sensitive and accurate detectors. Especially the superior timing precision increases the angular resolution for the detected air showers. This is crucial for the scientific goal of HiSCORE, which is to identify sources high-energy gamma rays. First prototype stations of HiSCORE were installed in 2012, and since 2014 the arrays consists of 29 stations covering an area of 0,3 km². A further extension is planned for 2017.

Tunka-IACT

Tunka-IACT will consist of several Imaging Air Cherenkov Telescopes using the same principle as MAGIC, H.E.S.S, VERITAS and CTA. The combination with HiSCORE enables a higher maximum energy for the observed gamma rays than with conventional imaging air cherenkov telescopes. As of 2016 the construction of the first telescope is nearly completed.

IACT

IACT stands for Imaging AtmosphericCherenkov Telescope or Technique. It is a device or method to detect very-high-energy gamma ray photons in the photon energy range of 50 GeV to 50 TeV. There are four operating IACT systems: High Energy Stereoscopic System (H.E.S.S.), Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC), First G-APD Cherenkov Telescope (FACT), and Very Energetic Radiation Imaging Telescope Array System (VERITAS). Set to be the world's largest telescope at the highest altitude, the Major Atmospheric Cherenkov Experiment Telescope (MACE) is built at Hanle, Ladakh, India. Also under design is the Cherenkov Telescope Array (CTA).

MAGIC (telescope) architectural structure

MAGIC is a system of two Imaging Atmospheric Cherenkov telescopes situated at the Roque de los Muchachos Observatory on La Palma, one of the Canary Islands, at about 2200 m above sea level. MAGIC detects particle showers released by gamma rays, using the Cherenkov radiation, i.e., faint light radiated by the charged particles in the showers. With a diameter of 17 meters for the reflecting surface, it was the largest in the world before the construction of H.E.S.S. II.

High Energy Stereoscopic System

High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging Atmospheric Cherenkov Telescopes (IACT) for the investigation of cosmic gamma rays in the photon energy range of 0.03 to 100 TeV. The acronym was chosen in honour of Victor Hess, who was the first to observe cosmic rays.

Coordinates: 51°48′35″N103°04′02″E / 51.80972°N 103.06722°E / 51.80972; 103.06722

Related Research Articles

Neutrino astronomy observational astronomy that benefits from the direct, or indirect, detection of neutrinos

Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. Due to their weak interactions with matter, neutrinos offer a unique opportunity to observe processes that are inaccessible to optical telescopes.

HEGRA architectural structure

HEGRA, which stands for High-Energy-Gamma-Ray Astronomy, was an atmospheric Cherenkov telescope for Gamma-ray astronomy. With its various types of detectors, HEGRA took data between 1987 and 2002, at which point it was dismantled in order to build its successor, MAGIC, at the same site.

Pierre Auger Observatory observatory

The Pierre Auger Observatory is an international cosmic ray observatory in Argentina designed to detect ultra-high-energy cosmic rays: sub-atomic particles traveling nearly at the speed of light and each with energies beyond 1018 eV. In Earth's atmosphere such particles interact with air nuclei and produce various other particles. These effect particles (called an "air shower") can be detected and measured. But since these high energy particles have an estimated arrival rate of just 1 per km2 per century, the Auger Observatory has created a detection area of 3,000 km2 (1,200 sq mi)—the size of Rhode Island, or Luxembourg—in order to record a large number of these events. It is located in the western Mendoza Province, Argentina, near the Andes.

LOPES (telescope)

The LOPES project was a cosmic ray detector array, located in Karlsruhe, Germany, and is operated in coincidence with an existing, well calibrated air shower experiment called KASCADE. In 2013, after approximately 10 years of measurements, LOPES was finally switched off and dismantled.

Neutrino detector physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources so far as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellenic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe."

VERITAS major ground-based gamma-ray observatory

VERITAS is a major ground-based gamma-ray observatory with an array of four 12 meter optical reflectors for gamma-ray astronomy in the GeV – TeV photon energy range. VERITAS uses the Imaging Atmospheric Cherenkov Telescope technique to observe gamma-rays that cause particle showers in Earth's upper atmosphere. The telescope design is based on the design of the existing 10m gamma-ray telescope at the Fred Lawrence Whipple Observatory. It consists of an array of imaging telescopes deployed such that they permit the maximum versatility and give the highest sensitivity in the 50 GeV – 50 TeV band. This very high energy observatory, completed in 2007, effectively complements the Fermi Gamma-ray Space Telescope due to its large collection area as well as its higher energy bound.

ANTARES (telescope)

ANTARES is the name of a neutrino detector residing 2.5 km under the Mediterranean Sea off the coast of Toulon, France. It is designed to be used as a directional neutrino telescope to locate and observe neutrino flux from cosmic origins in the direction of the Southern Hemisphere of the Earth, a complement to the South Pole neutrino detector IceCube that detects neutrinos from both hemispheres. The name comes from Astronomy with a Neutrino Telescope and Abyss environmental RESearch project; the acronym is also the name of the prominent star Antares. Other neutrino telescopes designed for use in the nearby area include the Greek NESTOR telescope and the Italian NEMO telescope, which are both in early design stages.

GRAPES-3

The GRAPES-3 experiment located at Ooty in India started as a collaboration of the Indian Tata Institute of Fundamental Research and the Japanese Osaka City University, and now also includes the Japanese Nagoya Women's University.

Milagro was a ground-based water Cherenkov radiation telescope situated in the Jemez Mountains near Los Alamos, New Mexico at the Fenton Hill Observatory site. It was primarily designed to detect gamma rays but also detected large numbers of cosmic rays. It operated in the TeV region of the spectrum at an altitude of 2530 m. Like conventional telescopes, Milagro was sensitive to light but the similarities ended there. Whereas "normal" astronomical telescopes view the universe in visible light, Milagro saw the universe at very high energies. The light that Milagro saw was about 1 trillion times more energetic than visible light. While these particles of light, known as photons, are the same as the photons that make up visible light, they behave quite differently due to their high energies.

Telescope Array Project Research project to observe air showers

The Telescope Array project is an international collaboration involving research and educational institutions in Japan, The United States, Russia, South Korea, and Belgium. The experiment is designed to observe air showers induced by ultra-high-energy cosmic ray using a combination of ground array and air-fluorescence techniques. It is located in the high desert in Millard County, Utah (USA) at about 1,400 meters (4,600 ft) above sea level.

Cherenkov Telescope Array multinational open observatory project to build a new generation ground-based gamma-ray instrument in the energy range extending from some tens of GeV to about 300 TeV

The Cherenkov Telescope Array or CTA is a multinational, worldwide project to build a new generation ground-based gamma-ray instrument in the energy range extending from some tens of GeV to about 300 TeV. It is proposed as an open observatory and will consist of two arrays of Imaging Atmospheric Cherenkov telescopes (IACTs), a first array at the Northern Hemisphere with emphasis on the study of extragalactic objects at the lowest possible energies, and a second array at the Southern Hemisphere, which is to cover the full energy range and concentrate on galactic sources. The physics program of CTA goes beyond high energy astrophysics into cosmology and fundamental physics.

Cosmic-ray observatory Installation built to detect high-energy-particles coming from space

A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays. This typically includes photons, electrons, protons, and some heavier nuclei, as well as antimatter particles. About 90% of cosmic rays are protons, 9% are alpha particles, and the remaining ~1% are other particles.

GAMMA scientific experiment

The GAMMA experiment is a study of:

Gamma-ray astronomy Observational astronomy performed with gamma rays

Gamma-ray astronomy is the astronomical observation of gamma rays, the most energetic form of electromagnetic radiation, with photon energies above 100 keV. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

Very-high-energy gamma ray

Very-high-energy gamma ray (VHEGR) denotes gamma radiation with photon energies of 100 GeV (Gigaelectronvolt) to 100 TeV (Teraelectronvolt), i.e., 1011 to 1014 electronvolts. This is approximately equal to wavelengths between 10−17 and 10−20 meters, or frequencies of 2 × 1025 to 2 × 1028 Hz. Such energy levels have been detected from emissions from astronomical sources such as some binary star systems containing a compact object. For example, radiation emitted from Cygnus X-3 has been measured at ranges from GeV to exaelectronvolt-levels. Other astronomical sources include BL Lacertae, 3C 66A Markarian 421 and Markarian 501. Various other sources exist that are not associated with known bodies. For example, the H.E.S.S. catalog contained 64 sources in November 2011.

High Altitude Water Cherenkov Experiment

The High Altitude Water Cherenkov Experiment or High Altitude Water Cherenkov Observatory is a gamma-ray and cosmic ray observatory located on the flanks of the Sierra Negra volcano in the Mexican state of Puebla at an altitude of 4100 meters, at 18°59′41″N97°18′30.6″W. HAWC is the successor to the Milagro gamma-ray observatory in New Mexico, which was also a gamma-ray observatory based around the principle of detecting gamma-rays indirectly using the water Cherenkov method.