In computer science, a turmite is a Turing machine which has an orientation in addition to a current state and a "tape" that consists of an infinite two-dimensional grid of cells. The terms ant and vant are also used. Langton's ant is a well-known type of turmite defined on the cells of a square grid. Paterson's worms are a type of turmite defined on the edges of an isometric grid.
It has been shown that turmites in general are exactly equivalent in power to one-dimensional Turing machines with an infinite tape, as either can simulate the other.
Langton's ants were invented in 1986 and declared "equivalent to Turing machines". [1] Independently, in 1988, Allen H. Brady considered the idea of two-dimensional Turing machines with an orientation and called them "TurNing machines". [2] [3]
Apparently independently of both of these, [4] Greg Turk investigated the same kind of system and wrote to A. K. Dewdney about them. A. K. Dewdney named them "tur-mites" in his "Computer Recreations" column in Scientific American in 1989. [5] Rudy Rucker relates the story as follows:
Dewdney reports that, casting about for a name for Turk's creatures, he thought, "Well, they're Turing machines studied by Turk, so they should be tur-something. And they're like little insects, or mites, so I'll call them tur-mites! And that sounds like termites!" With the kind permission of Turk and Dewdney, I'm going to leave out the hyphen, and call them turmites.
— Rudy Rucker, Artificial Life Lab [4]
Turmites can be categorised as being either relative or absolute. Relative turmites, alternatively known as "turning machines", have an internal orientation. Langton's ant is such an example. Relative turmites are, by definition, isotropic; rotating the turmite does not affect its outcome. Relative turmites are so named because the directions are encoded relative to the current orientation, equivalent to using the words "left" or "backwards". Absolute turmites, by comparison, encode their directions in absolute terms: a particular instruction may direct the turmite to move "north". Absolute turmites are two-dimensional analogues of conventional Turing machines, so are occasionally referred to as simply "two-dimensional Turing machines". The remainder of this article is concerned with the relative case.
The following specification is specific to turmites on a two-dimensional square grid, the most studied type of turmite. Turmites on other grids can be specified in a similar fashion.
As with Langton's ant, turmites perform the following operations each timestep:
As with Turing machines, the actions are specified by a state transition table listing the current internal state of the turmite and the color of the cell it is currently standing on. For example, the turmite shown in the image at the top of this page is specified by the following table:
Current color | |||||||
---|---|---|---|---|---|---|---|
0 | 1 | ||||||
Write color | Turn | Next state | Write color | Turn | Next state | ||
Current state | 0 | 1 | R | 0 | 1 | R | 1 |
1 | 0 | N | 0 | 0 | N | 1 |
The direction to turn is one of L (90° left), R (90° right), N (no turn) and U (180° U-turn).
Starting from an empty grid or other configurations, the most commonly observed behaviours are chaotic growth, spiral growth and 'highway' construction. Rare examples become periodic after a certain number of steps.
Allen H. Brady searched for terminating turmites (the equivalent of busy beavers) and found a 2-state 2-color machine that printed 37 1's before halting, and another that took 121 steps before halting. [3] He also considered turmites that move on a triangular grid, finding several busy beavers here too.
Ed Pegg, Jr. considered another approach to the busy beaver game. He suggested turmites that can turn for example both left and right, splitting in two. Turmites that later meet annihilate each other. In this system, a Busy Beaver is one that from a starting pattern of a single turmite lasts the longest before all the turmites annihilate each other. [6]
Following Allen H. Brady's initial work of turmites on a triangular grid, hexagonal tilings have also been explored. Much of this work is due to Tim Hutton, and his results are on the Rule Table Repository. He has also considered Turmites in three dimensions, and collected some preliminary results. Allen H. Brady and Tim Hutton have also investigated one-dimensional relative turmites on the integer lattice, which Brady termed flippers. (One-dimensional absolute turmites are of course simply known as Turing machines.)
In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.
The Game of Life, also known simply as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.
A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.
In theoretical computer science, the busy beaver game aims at finding a terminating program of a given size that either produces the most output possible, or runs for the longest number of steps. Since an endlessly looping program producing infinite output or running for infinite time is easily conceived, such programs are excluded from the game. Rather than traditional programming languages, the programs used in the game are n-state Turing machines, one of the first mathematical models of computation.
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.
Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. The idea has been generalized in several different ways, such as turmites which add more colors and more states.
In computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time and correctly decides whether the number belongs to the set or not.
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function called the taxicab distance, Manhattan distance, or city block distance. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.
An ant is a eusocial insect that belongs to the same order as wasps and bees.
The approximation error in a data value is the discrepancy between an exact value and some approximation to it. This error can be expressed as an absolute error or as a relative error.
A cyclic cellular automaton is a kind of cellular automaton rule developed by David Griffeath and studied by several other cellular automaton researchers. In this system, each cell remains unchanged until some neighboring cell has a modular value exactly one unit larger than that of the cell itself, at which point it copies its neighbor's value. One-dimensional cyclic cellular automata can be interpreted as systems of interacting particles, while cyclic cellular automata in higher dimensions exhibit complex spiraling behavior.
The following are examples to supplement the article Turing machine.
A fiducial marker or fiducial is an object placed in the field of view of an image for use as a point of reference or a measure. It may be either something placed into or on the imaging subject, or a mark or set of marks in the reticle of an optical instrument.
RoboMind is a simple educational programming environment with its own scripting language that allows beginners to learn the basics of computer science by programming a simulated robot. In addition to introducing common programming techniques, it also aims at offering insights in robotics and artificial intelligence. RoboMind is available as stand-alone application for Windows, Linux, and Mac OS X. It was first released in 2005 and was originally developed by Arvid Halma, a student of the University of Amsterdam at the time. Since 2011, RoboMind has been published by Research Kitchen.
Paterson's worms are a family of cellular automata devised in 1971 by Mike Paterson and John Horton Conway to model the behaviour and feeding patterns of certain prehistoric worms. In the model, a worm moves between points on a triangular grid along line segments, representing food. Its turnings are determined by the configuration of eaten and uneaten line segments adjacent to the point at which the worm currently is. Despite being governed by simple rules the behaviour of the worms can be extremely complex, and the ultimate fate of one variant is still unknown.
In geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,6}.
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.