Twisted geometries

Last updated

Twisted geometries are discrete geometries that play a role in loop quantum gravity and spin foam models, where they appear in the semiclassical limit of spin networks. [1] [2] [3] A twisted geometry can be visualized as collections of polyhedra dual to the nodes of the spin network's graph. [4] Intrinsic and extrinsic curvatures are defined in a manner similar to Regge calculus, but with the generalisation of including a certain type of metric discontinuities: the face shared by two adjacent polyhedra has a unique area, but its shape can be different. This is a consequence of the quantum geometry of spin networks: ordinary Regge calculus is "too rigid" to account for all the geometric degrees of freedom described by the semiclassical limit of a spin network.

The name twisted geometry captures the relation between these additional degrees of freedom and the off-shell presence of torsion in the theory, but also the fact that this classical description can be derived from Twistor theory, by assigning a pair of twistors to each link of the graph, and suitably constraining their helicities and incidence relations. [5] [6]

Related Research Articles

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars.

<span class="mw-page-title-main">Wormhole</span> Hypothetical topological feature of spacetime

A wormhole is a speculative structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Loop quantum gravity</span> Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Einstein's geometric formulation rather than the treatment of gravity as a force. As a theory LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale above the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also, an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which space-time itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to general relativity and quantum field theory, in particular to scattering amplitudes.

Jorge Pullin is an American theoretical physicist known for his work on black hole collisions and quantum gravity. He is the Horace Hearne Chair in theoretical Physics at the Louisiana State University.

Laurent Freidel is a French theoretical physicist and mathematical physicist known mainly for his contributions to quantum gravity, including loop quantum gravity, spin foam models, doubly special relativity, group field theory, relative locality and most recently metastring theory. He is currently a faculty member at Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada.

<span class="mw-page-title-main">Spin foam</span> Topological structure used in a description of quantum gravity

In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

Induced gravity is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.

<span class="mw-page-title-main">String-net liquid</span> Condensed matter physics model involving only closed loops

In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only closed loops; or networks of oriented, labeled strings obeying branching rules given by some gauge group; or still more general networks.

A quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.

<span class="mw-page-title-main">Group field theory</span> Quantum field theory with a Lie group base manifold

Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds. Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.

References

  1. L. Freidel and S. Speziale (2010). "Twisted geometries: A geometric parametrisation of SU(2) phase space". Phys. Rev. D. 82 (8): 084040. arXiv: 1001.2748 . Bibcode:2010PhRvD..82h4040F. doi:10.1103/PhysRevD.82.084040. S2CID   119110824.
  2. C. Rovelli and S. Speziale (2010). "On the geometry of loop quantum gravity on a graph". Phys. Rev. D. 82 (4): 044018. arXiv: 1005.2927 . Bibcode:2010PhRvD..82d4018R. doi:10.1103/PhysRevD.82.044018. S2CID   118396168.
  3. E. R. Livine and J. Tambornino (2012). "Spinor Representation for Loop Quantum Gravity". J. Math. Phys. 53 (1): 012503. arXiv: 1105.3385 . Bibcode:2012JMP....53a2503L. doi:10.1063/1.3675465. S2CID   119607941.
  4. E. Bianchi, P. Dona and S. Speziale (2011). "Polyhedra in loop quantum gravity". Phys. Rev. D. 83 (4): 044035. arXiv: 1009.3402 . Bibcode:2011PhRvD..83d4035B. doi:10.1103/PhysRevD.83.044035. S2CID   14414561.
  5. L. Freidel and S. Speziale (2010). "From twistors to twisted geometries". Phys. Rev. D. 82 (8): 084041. arXiv: 1006.0199 . Bibcode:2010PhRvD..82h4041F. doi:10.1103/PhysRevD.82.084041. S2CID   119292655.
  6. S. Speziale and Wolfgang M. Wieland (2012). "The twistorial structure of loop-gravity transition amplitudes". Phys. Rev. D. 86 (12): 124023. arXiv: 1207.6348 . Bibcode:2012PhRvD..86l4023S. doi:10.1103/PhysRevD.86.124023. S2CID   59406729.