Two-photon photovoltaic effect

Last updated

Two-photon photovoltaic effect (TPP effect) is an energy collection method based on two-photon absorption (TPA). The TPP effect can be thought of as the nonlinear equivalent of the traditional photovoltaic effect involving high optical intensities. This effect occurs when two photons are absorbed at the same time resulting in an electron-hole pair.

Contents

Background

TPA is typically several orders of magnitude weaker than linear absorption at low light intensities. It differs from linear absorption in that the optical transition rate due to TPA depends on the square of the light intensity, thus it is a nonlinear optical process and can dominate over linear absorption at high intensities. Therefore, the power dissipation from the TPA and the resulting free carrier scattering are harmful problems in semiconductor devices which operate based on the nonlinear optical interactions such as the Kerr and Raman effects, when dealing with high intensities. The TPP effect is studied as a possible solution to this double crisis on energy efficiency.

Although some improvements and theoretical investigation on the field have been done in the past, the concrete application of the effect was numerically and experimentally analysed for the first time by Bahram Jalali and colleagues in 2006 in Silicon. [1]

Physics

TPP effect devices are based on waveguides with lateral p–n junction diodes, in which the pump power is nonlinearly lost due to TPA and free-carrier absorption (FCA) along the z-direction, perpendicular to the junction x-y cross-section.

Coupled optical intensity is governed by the following equation:

 

 

 

 

(1)

where:

α is the linear absorption coefficient;
β the TPA coefficient;
and αFCA is called the FCA coefficient which is given by Soref´s expression.

Carrier photogeneration rate is defined by:

where Ep is the energy of the photon and the factor is due to the fact that there are two photons involved in the process.

Photocurrent per unit length: , where is the effective area of the waveguide and q is the electron charge. For a waveguide of length L, we have

We define as the coupled pump intensity at . Therefore, we obtain the following expression:

 

 

 

 

(2)

This last expression is called the effective length which is the nonlinear equivalent to the interaction length defined in optical fibers. Contribution to carrier injection and recombination to the total current need to be considered as well so that the total photodiode current is expressed as: [2]

 

 

 

 

(3)

The Shockley equation gives I–V (current-voltage) characteristic of an idealized diode: [3]

 

 

 

 

(4)

The value of is called the reverse bias saturation current and is defined by: [3]

where h and L are defined in Fig. 1 and the remaining parameters have the usual meaning defined in reference Sze's Physics of semiconductor devices. [3]

The Shockley equation is valid since photogeneration in the N and P doped regions is negligible in the p–n diode. This contrasts the conventional solar cell theory, where photogeneration predominantly occurs in the N and P doped regions [4] as shown in Fig. 2.

Due to PIN structure (Figure 2) we have to take into account the recombination current which we approximate by Shockley–Read–Hall recombination given by :

 

 

 

 

(5)

where is defined in Fig.1, is the effective carrier density along and and are the electron and hole bulk recombination lifetimes, respectively.

In a circuit, power dissipation refers to the rate at which energy is lost due to resistive elements and is defined traditionally as follows:

 

 

 

 

(6)

We now define collection efficiency, which is number of carriers/photons consumed by TPA: [4]

 

 

 

 

(7)

This is appropriate for such devices as amplifiers and wavelength converters where energy harvesting is a useful byproduct but not the main functionality of the device itself. If the TPP effect is intended to be used in a photovoltaic cell, then the power efficiency should be considered.

First, external quantum efficiency is given by , where refers to the coupling efficiency of the light into the waveguide and

which can be approximated to:

Finally, power efficiency is given by:

 

 

 

 

(8)

Intermediate band

Conventional solar cells rely on one-photon transitions between the valence (VB) and conduction band (CB) of a semiconductor. The use of an intermediate state in the bandgap was first described by Luque and Martí in 1997. [5] They showed that with the addition of an intermediate level to the band diagram of a solar cell, the theoretical efficiency limit can be improved to well beyond that of the Shockley-Queisser [6] model. This improvement is possible through the capture of sub-bandgap photons. The presence of an intermediate band will allow the absorption of such photons resulting in the generation of electron-hole pairs, adding to those created by direct optical transitions. In two independent electron excitations, photons are absorbed with transitions from valence (VB) to intermediate band (IB) and from intermediate (IB) to conduction band (VB). In order to achieve optimal results, any devices and processes are assumed ideal as associated conditions include infinite carrier mobility, full absorption of desired photons, partial filling of the IB in order to both donate and receive electrons and no possibility of extracting current from the IB. Within this framework, the limiting efficiency of an intermediate-band solar cell (IBSC) has been calculated to be 63.1%.

The presence of an intermediate band can be the result of several techniques, but most notably of the introduction of impurities in the crystal structure. Multiple rare-earth elements are known to produce the required states between bands in a semiconductor material in this way. Increasing the concentration of such impurities leads to the possibility of shaping an intermediate band, as demonstrated in GaAs alloys. An interesting alternative is the use of quantum dot technology. A solar cell can be designed to include a region of a quantum dot structure that induces the desired confined state. In 2001, Martí et al. proposed a feasible method to meet the condition of a half-filled band. [7] There is still active research on which materials demonstrate such desired characteristics as well as the synthesis of such materials.

The basic workings of an IBSC device were first proven to be effective in the production of a photocurrent by Martí et al. in 2006. [8]

Materials

Semiconductor materials are so relevant due to the fact that their conducting properties can be altered in useful ways by introducing impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The development of these junctions is the basis of diodes, transistors and all modern electronics. Examples of semiconductors are silicon, germanium, gallium arsenide. After silicon, gallium arsenide is the second most common semiconductor. [3]

Silicon (Si)

Silicon photonics has been widely studied since pioneering works of Soref and Petermann in the late 1980s and early 1990s [9] due to the desire to create low-cost photonic devices by taking advantage of the strong silicon manufacturing infrastructure. Silicon wafers have the lowest cost (per unit area) and the highest crystal quality of any semiconductor material.

However, the case for silicon photonics is even stronger. Silicon has excellent material properties that are important in photonic devices: [2]

This last point is actually essential for the examination of the TPP effect. High index contrast between silicon (n =3.45) and SiO2 (n =1.45) makes it possible to scale photonic devices to the hundreds of nanometer level. Such lateral and vertical dimensions are required for true compatibility with IC processing. In addition, the high optical intensity arising from the large index contrast (between Si and SiO2) makes it possible to observe nonlinear optical interactions, such as Raman and Kerr effects, in chip-scale devices. [2]

For these reasons, Silicon has been commonly used as the material for the conventional photovoltaic effect. Due to the Shockley–Queisser limit [6] it is known that a single p-n junction photovoltaic cell maximum solar conversion efficiency is around 33.7% for a bandgap of 1.34eV. However, Silicon has a bandgap of 1.1eV, corresponding to an efficiency of 32%.

However, for TPP effect results of collection efficiency defined in (7) are plotted in Fig 4 as function of voltage with different pump intensities. [1]

A good agreement is shown in Fig. 4 among the experimental, analytical and numerical simulated models. An interpolation of the data can be made to show a collection efficiency around 43% for in low high pumps, which really approaches to the theoretical limit set in 50%. However, is not exactly the same for high pump intensity. This limit of collection efficiency leads to a relatively low inherent efficiency of around 5.5%.

Any imaginable means that improves beta can enhance the power efficiency of the present approach and FCA is lower at shorter wavelengths increasing . Combining these two effects could be translated into a higher limit efficiency on TPP effect predicted.

Gallium Arsenide (GaAs)

Gallium arsenide (GaAs) is an important semiconductor material for high-cost, high-efficiency solar cells and is used for single-crystalline thin-film solar cells as well as multi-junction solar cells.

Every two photons lost to TPA generate one electron-hole pair in the semiconductor material and these photogenerated carriers are available for photovoltaic conversion into electrical power as shown in Figure 5 for two particular wavelengths ().

TPA has been observed experimentally in gallium arsenide (GaAs) and its coefficient, β, calculated in GaAs at 1.3 μm is 42.5 cm/GW (much higher than silicon's: 3.3 cm/GW ). Moreover, at the telecommunication wavelength of 1.55 μm, β is reported to be around 15 cm/GW in GaAs compared with 0.7 cm/GW in silicon. Thus, the TPP effect is expected to be stronger in GaAs. [10]

In order to get experimental data to compare to the theoretical analysis, Figure 6 illustrates how TPP can be realized in a single-mode GaAs/AlGaAs waveguide using a p-i-n junction diode.

The Shockley–Read–Hall recombination is taken into account in this model, assuming the trap energy level is located in the middle of the bandgap. The electron and hole bulk recombination lifetimes, and , in bulk GaAs are of the order of 10−8 s, about 2 orders of magnitude smaller than those in bulk silicon. Surface recombination reduces the power efficiency of the TPP effect as the electrons and holes recombine before they are collected at the contacts.

The TPP effect is more efficient at 976 nm due to larger β. For a 5-cm long device at 150 mW power efficiency up to 8% is theoretically predicted which is higher than those achievable in silicon. [10]

Potential applications

A potential application of the two-photon photovoltaic effect is remote power delivery to physical sensors installed in critical environments where electrical sparks are dangerous and copper cables must be avoided.

Related Research Articles

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. It produces an electrical current when it absorbs photons. This can be used for detection and measurement applications, or for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from visible light photocells to gamma ray spectrometers.

<span class="mw-page-title-main">Band gap</span> Energy range in a solid where no electron states exist

In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band to the conduction band, then current can flow. Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps are generally insulators, those with small band gaps are semiconductor, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Quantum well</span> Concept in quantum mechanics

A quantum well is a potential well with only discrete energy values.

<span class="mw-page-title-main">Quantum efficiency</span> Property of photosensitive devices

The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a magnetic tunnel junction.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.

Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons. A basic thermophotovoltaic system consists of a hot object emitting thermal radiation and a photovoltaic cell similar to a solar cell but tuned to the spectrum being admitted from the hot object.

<span class="mw-page-title-main">Two-photon absorption</span> Simultaneous absorption of two photons by a molecule

In atomic physics, two-photon absorption, also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state to a higher energy, most commonly an excited electronic state. Absorption of two photons with different frequencies is called non-degenerate two-photon absorption. Since TPA depends on the simultaneous absorption of two photons, the probability of TPA is proportional to the square of the light intensity; thus it is a nonlinear optical process. The energy difference between the involved lower and upper states of the molecule is equal or smaller than the sum of the photon energies of the two photons absorbed. Two-photon absorption is a third-order process, with absorption cross section typically several orders of magnitude smaller than one-photon absorption cross section.

<span class="mw-page-title-main">Quantum dot solar cell</span> Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions and thin film cells. Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion,, hot-carrier effects and other multiple-carrier ejection techniques.

A definition in semiconductor physics, carrier lifetime is defined as the average time it takes for a minority carrier to recombine. The process through which this is done is typically known as minority carrier recombination.

<span class="mw-page-title-main">Multi-junction solar cell</span> Solar power cell with multiple band gaps from different materials

Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency.

<span class="mw-page-title-main">Shockley–Queisser limit</span> Maximum theoretical efficiency of a solar cell

In physics, the radiative efficiency limit is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is one of the field's most important contributions.

<span class="mw-page-title-main">Direct and indirect band gaps</span> Types of energy range in a solid where no electron states can exist

In semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the material has an "indirect gap". The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.

A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.

<span class="mw-page-title-main">Theory of solar cells</span>

The theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable semiconductor device. The theoretical studies are of practical use because they predict the fundamental limits of a solar cell, and give guidance on the phenomena that contribute to losses and solar cell efficiency.

<span class="mw-page-title-main">Solar-cell efficiency</span> Ratio of energy extracted from sunlight in solar cells

Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.

Intermediate band photovoltaics in solar cell research provides methods for exceeding the Shockley–Queisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands. Theoretically, introducing an IB allows two photons with energy less than the bandgap to excite an electron from the valence band to the conduction band. This increases the induced photocurrent and thereby efficiency.

Optoelectronic reciprocity relations relate properties of a diode under illumination to the photon emission of the same diode under applied voltage. The relations are useful for interpretation of luminescence based measurements of solar cells and modules and for the analysis of recombination losses in solar cells.

References

  1. 1 2 Jalali, Bahram; Fathpour, Sasan (December 2006). "Silicon Photonics". Journal of Lightwave Technology. 24 (12): 4600–4615. Bibcode:2006JLwT...24.4600J. doi:10.1109/jlt.2006.885782. ISSN   0733-8724.
  2. 1 2 3 Fathpour, Sasan; Tsia, Kevin K.; Jalali, Bahram (December 2007). "Two-Photon Photovoltaic Effect in Silicon". IEEE Journal of Quantum Electronics. 43 (12): 1211–1217. Bibcode:2007IJQE...43.1211F. doi:10.1109/jqe.2007.907545. ISSN   0018-9197. S2CID   7109472.
  3. 1 2 3 4 Sze, S. M., 1936- (2007). Physics of semiconductor devices. Ng, Kwok Kwok, 1952- (3rd ed.). Hoboken, N.J.: Wiley-Interscience. ISBN   978-0-471-14323-9. OCLC   74680973.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  4. 1 2 Khriachtchev, Leonid, ed. (2008). Silicon Nanophotonics - Basic Principles, Present Status and Perspectives. doi:10.1142/9789814241137. ISBN   9789814241137.
  5. Luque, Antonio; Martí, Antonio (1997-06-30). "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels". Physical Review Letters. 78 (26): 5014–5017. Bibcode:1997PhRvL..78.5014L. doi:10.1103/physrevlett.78.5014. ISSN   0031-9007.
  6. 1 2 Shockley, William; Queisser, Hans J. (March 1961). "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells". Journal of Applied Physics. 32 (3): 510–519. Bibcode:1961JAP....32..510S. doi:10.1063/1.1736034. ISSN   0021-8979.
  7. Marti, A.; Cuadra, L.; Luque, A. (2001). "Partial filling of a quantum dot intermediate band for solar cells". IEEE Transactions on Electron Devices. 48 (10): 2394–2399. Bibcode:2001ITED...48.2394M. doi:10.1109/16.954482. ISSN   0018-9383.
  8. Martí, A.; Antolín, E.; Stanley, C. R.; Farmer, C. D.; López, N.; Díaz, P.; Cánovas, E.; Linares, P. G.; Luque, A. (2006-12-13). "Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell". Physical Review Letters. 97 (24): 247701. Bibcode:2006PhRvL..97x7701M. doi:10.1103/physrevlett.97.247701. ISSN   0031-9007. PMID   17280325.
  9. Rickman, Andrew (2014-07-31). "The commercialization of silicon photonics". Nature Photonics. 8 (8): 579–582. Bibcode:2014NaPho...8..579R. doi:10.1038/nphoton.2014.175. ISSN   1749-4885. S2CID   123328592.
  10. 1 2 Ma, Jichi; Chiles, Jeff; Sharma, Yagya D.; Krishna, Sanjay; Fathpour, Sasan (2014). "Two-Photon Photovoltaic Effect in Gallium Arsenide". Cleo: 2014. Washington, D.C.: OSA. 39 (18): 5297–5500. Bibcode:2014OptL...39.5297M. doi:10.1364/cleo_at.2014.jth2a.66. ISBN   978-1-55752-999-2. PMID   26466255.