Twyman's law

Last updated

Twyman's law states that "Any figure that looks interesting or different is usually wrong", [1] following the principle that "the more unusual or interesting the data, the more likely they are to have been the result of an error of one kind or another". It is named after the media and market researcher Tony Twyman and has been described as one of the most important laws of data analysis. [2] [3] [4]

The law is based on the fact that errors in data measurement and analysis can lead to observed quantities that are wildly different from typical values. These errors are usually more common than real changes of similar magnitude in the underlying process being measured. For example, if an analyst at a software company notices that the number of users has doubled overnight, the most likely explanation is a bug in logging, rather than a true increase in users. [3]

The law can also be extended to situations where the underlying data is influenced by unexpected factors that differ from what was intended to be measured. For example, when schools show unusually large improvements in test scores, subsequent investigation often reveals that those scores were driven by fraud. [5] [6]

See also

Related Research Articles

Biostatistics is a branch of statistics that applies statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experiments and the interpretation of the results.

<span class="mw-page-title-main">Design of experiments</span> Design of tasks

The design of experiments, also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.

Observational error is the difference between a measured value of a quantity and its unknown true value. Such errors are inherent in the measurement process; for example lengths measured with a ruler calibrated in whole centimeters will have a measurement error of several millimeters. The error or uncertainty of a measurement can be estimated, and is specified with the measurement as, for example, 32.3 ± 0.5 cm.

<span class="mw-page-title-main">Statistics</span> Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

Accuracy and precision are two measures of observational error.

<span class="mw-page-title-main">Experiment</span> Scientific procedure performed to validate a hypothesis

An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary greatly in goal and scale but always rely on repeatable procedure and logical analysis of the results. There also exist natural experimental studies.

Statistical bias, in the mathematical field of statistics, is a systematic tendency in which the methods used to gather data and generate statistics present an inaccurate, skewed or biased depiction of reality. Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their work. Understanding the source of statistical bias can help to assess whether the observed results are close to actuality. Issues of statistical bias has been argued to be closely linked to issues of statistical validity.

In scientific research, the null hypothesis is the claim that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed effect is due to chance alone, hence the term "null". In contrast with the null hypothesis, an alternative hypothesis is developed, which claims that a relationship does exist between two variables.

In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis when a specific alternative hypothesis is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.

Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved latent variables. The observed variables are modelled as linear combinations of the potential factors plus "error" terms, hence factor analysis can be thought of as a special case of errors-in-variables models.

In psychometrics, item response theory (IRT) is a paradigm for the design, analysis, and scoring of tests, questionnaires, and similar instruments measuring abilities, attitudes, or other variables. It is a theory of testing based on the relationship between individuals' performances on a test item and the test takers' levels of performance on an overall measure of the ability that item was designed to measure. Several different statistical models are used to represent both item and test taker characteristics. Unlike simpler alternatives for creating scales and evaluating questionnaire responses, it does not assume that each item is equally difficult. This distinguishes IRT from, for instance, Likert scaling, in which "All items are assumed to be replications of each other or in other words items are considered to be parallel instruments". By contrast, item response theory treats the difficulty of each item as information to be incorporated in scaling items.

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.

Internal validity is the extent to which a piece of evidence supports a claim about cause and effect, within the context of a particular study. It is one of the most important properties of scientific studies and is an important concept in reasoning about evidence more generally. Internal validity is determined by how well a study can rule out alternative explanations for its findings. It contrasts with external validity, the extent to which results can justify conclusions about other contexts. Both internal and external validity can be described using qualitative or quantitative forms of causal notation.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

<span class="mw-page-title-main">Research design</span> Overall strategy utilized to carry out research

Research design refers to the overall strategy utilized to answer research questions. A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or irrelevant answers.

<span class="mw-page-title-main">Randomized experiment</span> Experiment using randomness in some aspect, usually to aid in removal of bias

In science, randomized experiments are the experiments that allow the greatest reliability and validity of statistical estimates of treatment effects. Randomization-based inference is especially important in experimental design and in survey sampling.

<span class="mw-page-title-main">A/B testing</span> Experiment methodology

A/B testing is a user experience research methodology. A/B tests consist of a randomized experiment that usually involves two variants, although the concept can be also extended to multiple variants of the same variable. It includes application of statistical hypothesis testing or "two-sample hypothesis testing" as used in the field of statistics. A/B testing is a way to compare multiple versions of a single variable, for example by testing a subject's response to variant A against variant B, and determining which of the variants is more effective.

<span class="mw-page-title-main">Multiple comparisons problem</span> Statistical interpretation with many tests

In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or estimates a subset of parameters selected based on the observed values.

<span class="mw-page-title-main">Replication (statistics)</span> Principle that variation can be better estimated with nonvarying repetition of conditions

In engineering, science, and statistics, replication is the process of repeating a study or experiment under the same or similar conditions to support the original claim, which crucial to confirm the accuracy of results as well as for identifying and correcting the flaws in the original experiment. ASTM, in standard E1847, defines replication as "... the repetition of the set of all the treatment combinations to be compared in an experiment. Each of the repetitions is called a replicate."

<span class="mw-page-title-main">Quasi-experiment</span> Empirical interventional study

A quasi-experiment is an empirical interventional study used to estimate the causal impact of an intervention on target population without random assignment. Quasi-experimental research shares similarities with the traditional experimental design or randomized controlled trial, but it specifically lacks the element of random assignment to treatment or control. Instead, quasi-experimental designs typically allow the researcher to control the assignment to the treatment condition, but using some criterion other than random assignment.

References

  1. Kohavi, Ron. "Twyman's Law and Controlled Experiments" (PDF). ExP Experimentation Platform. Retrieved May 8, 2020.
  2. Marsh, Catherine; Elliott, Jane (2009). Exploring Data. Polity. p. 46. ISBN   978-0-7456-2283-5.
  3. 1 2 Kohavi, Ron; Tang, Diane; Xu, Ya (2020). Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press. p. 39. ISBN   978-1-108-72426-5.
  4. Ehrenberg, A. S. C.; Twyman, W. A. (1967). "On Measuring Television Audiences". Journal of the Royal Statistical Society. Series A (General). 130 (1): 1–60. doi:10.2307/2344037. ISSN   0035-9238. JSTOR   2344037.
  5. "When test scores are too good to be true", The Hechinger Report, 2011-03-07
  6. "Clinical Genome Research", Geneyx.com