UBC Biomass Research and Demonstration Facility

Last updated
UBC Biomass Research and Demonstration Facility
Entrance to the UBC Biomass Research and Demonstration Facility UBC Biomass Research and Demonstration Facility.JPG
Entrance to the UBC Biomass Research and Demonstration Facility
Industry Renewable energy
Location Vancouver, British Columbia
CountryCanada
Key peopleJohn Gorjup, OERD, NRCan
Cost
Cost$ 28 million
CEF contribution$ 10.8 million
Homepage UBC-bioenergy-research-and-demonstration-facilitycom

The Biomass Research and Demonstration Facility uses biomass to create clean heat and energy. This facility is located at 2329 West Mall in Vancouver at the University of British Columbia's West Point Grey Campus. Official operation began in September 2012, by combining syngas and gasification conditioning systems with a Jenbacher engine. The highest potential output of this system is 2 MWe (megawatts) of electricity and 9600 lbs of steam per hour. This system is the first of its type in all of Canada, and it was put together by the cooperation of three parties: General Electric (GE), Nexterra, and the University of British Columbia (UBC).

Contents

History

In 2007, the IPCC (Intergovernmental Panel on Climate Change) came up with the conclusion that human-made emissions are destabilizing the earth's natural systems. As a response to this problem, the Greenhouse Gas Reduction Targets Act (GHGRTA) was set to the public bodies of British Columbia, including UBC. [1] The GHGRTA had expectations that UBC would become carbon-neutral (Bill 44, compensating for the excess carbon emissions by cash through carbon credits system) by 2010. [2] [3]

By March 24, 2010, then-UBC President Stephen Toope announced UBC's dedication to climate action summed up by three future carbon reduction targets; 33% below 2007 levels by 2015, 66% below by 2020, and 100% below by 2050. To achieve the 2015 goal, UBC Climate Action Plan [4] committed 117 million dollars to three goals: converting steam heating systems to hot water systems, reducing emissions by 22%, optimizing academic building and behavior change programs, [5] and the UBC biomass research and demonstration facility, which will reduce emissions by 9% for a total of 33% of reduced emissions by UBC from 2007 levels. [6] [7]

Contributors

Represented as an initiative by Climate Action Plan UBC, this project began operation in May 2011 and is composed of three parties: UBC, GE Energy and Nexterra. The Biomass Research and Demonstration Facility takes advantage of gasification processes resulting in a clean source of renewable heat and power. The major owners of this project are Tandem Expansion Fund and the Business Development Bank of Canada (BCD).

The project includes efforts from UBC, Nexterra and GE Energy. The process began in 2010 to create North America's first demonstration of a community-scale version of an internal combustion engine that was based on a combined heat and power (CHP) system fuelled by woody biomass.

Nexterra was founded in Vancouver, Canada, and creates energy-from-waste gasification systems for the production of clean, renewable heat and power. It utilizes biomass in the form of wood chips which it treats to create fuel for its bioenergy systems. Its other projects include:

General Electric (GE) and its division GE Energy help with the project by providing the Jenbacher engine. [8] GE is a large American conglomerate that has many different branches. It is constantly ranked as a Fortune 500 company.

Technology

The system is designed by Nexterra, and combines Nexterra's gasification and syngas conditioning technologies with GE's Jenbacher engines. [9] This is an energy-from-renewable-waste combined heat and power (CHP) system. This system will produce 2MW of electricity from the engine and 3MW of thermal energy to heat the campus. The system has two main modes of operation:

Process

At the beginning of this procedure, biological materials (in UBC's case, wood chips) are gathered and put through two sets of procedures involving the combined Heat and Power Mode and the Thermal Mode Systems.

Heat and Power Mode System (demonstration mode)

  1. Moisture content in wood chips is reduced to 20% by the biomass dryer.
  2. Treated wood chips are conveyed by a horizontal auger which feeds fuel to the vertical auger that then pushes the fuel up into the fuel pile inside the gasifier.
  3. The gasifier converts wood chips to clean, renewable synthetic gas (syngas). There are three main steps in this process. [10]
    1. Gasifier: Takes the fuel and then puts it through drying, pyrolysis, gasification and reduction to ash. Inside heat and restricted oxygen allows the fuel to undergo gasification.
    2. Automatic ash removal system: The non-combustatble ash is pushed towards the bottom of the gasifier where it is periodically removed through hydraulically controlled grates. After being removed by the grates the ash is moved away by two parallel augers.
    3. Syngas: Exits the gasifier at 500-700 °F (260-370 °C). Then the syngas can be combusted in a close-coupled oxidizer. The resulting heat can be used to create energy in many different ways. e.g. boilers, heat exchanges, or it can be cleaned and used for the firing of internal combustion engines. It could also be to create higher value gases or chemicals.
  • This process creates 2MWe towards the UBC electric grid and 9600 lbs of steam per hour, which equates to 12% of total campus heat consumption. The gas engine currently runs on renewable natural gas to boost overall energy production rather than the syngas. [11]

Thermal Mode System

  1. Syngas is taken to the oxidizer and burned after the gasifier.
  2. Gas from oxidizer is then used to in the boiler to produce steam.
  3. The steam is then used in UBC's existing heating infrastructure.
  4. The gas from this process is cleaned in an electrostatic precipitator (ESP) before it is released. The ESP removes almost all of the particulate matter.
  • The Thermal Mode System creates 20,000 lbs of steam per hour, which fulfills 25% of heat consumption at UBC.

Project outcomes

University of British Columbia

Project status, since operation began in July 2012 until December 2014:

Related Research Articles

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Combined cycle power plant</span> Assembly of heat engines that work in tandem from the same source of heat

A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turbine (CCGT) plant, which is a kind of gas-fired power plant. The same principle is also used for marine propulsion, where it is called a combined gas and steam (COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs.

<span class="mw-page-title-main">Cogeneration</span> Simultaneous generation of electricity and useful heat

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal, oil, or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Bioenergy</span> Renewable energy made from biomass

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

<span class="mw-page-title-main">Biomass to liquid</span>

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

<span class="mw-page-title-main">Gas engine</span> Internal combustion engine powered by gaseous fuel

A gas engine is an internal combustion engine that runs on a fuel gas, such as coal gas, producer gas, biogas, landfill gas, natural gas or hydrogen. In the United Kingdom and British English-speaking countries, the term is unambiguous. In the United States, due to the widespread use of "gas" as an abbreviation for gasoline (petrol), such an engine is sometimes called by a clarifying term, such as gaseous-fueled engine or natural gas engine.

An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) refers to a series of processes designed to convert waste materials into usable forms of energy, typically electricity or heat. As a form of energy recovery, WtE plays a crucial role in both waste management and sustainable energy production by reducing the volume of waste in landfills and providing an alternative energy source.

Plasma gasification is an extreme thermal process using plasma which converts organic matter into a syngas which is primarily made up of hydrogen and carbon monoxide. A plasma torch powered by an electric arc is used to ionize gas and catalyze organic matter into syngas, with slag remaining as a byproduct. It is used commercially as a form of waste treatment, and has been tested for the gasification of refuse-derived fuel, biomass, industrial waste, hazardous waste, and solid hydrocarbons, such as coal, oil sands, petcoke and oil shale.

The Isle of Wight gasification facility is a municipal waste treatment plant in Newport, Isle of Wight. It entered the commissioning phase in autumn 2008, and was replaced by a moving grate incinerator in 2019.

<span class="mw-page-title-main">Dynamotive Energy Systems</span>

Dynamotive Energy Systems Corporation is a Canadian based Renewable Energy Company which specializes in fast pyrolysis, a process which creates a product named bio-oil. Its only other residue is char.

<span class="mw-page-title-main">Bioenergy with carbon capture and storage</span>

Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon dioxide (CO2) that is produced.

Plasma gasification is in commercial use as a waste-to-energy system that converts municipal solid waste, tires, hazardous waste, and sewage sludge into synthesis gas (syngas) containing hydrogen and carbon monoxide that can be used to generate power. Municipal-scale waste disposal plasma arc facilities have been in operation in Japan and China since 2002. No commercial implementations in Europe and North America have succeeded so far. The technology is characterized by the potential of very high level of destruction of the incoming waste, but low or negative net energy production and high operational costs.

Coal gasification is a process whereby a hydrocarbon feedstock (coal) is converted into gaseous components by applying heat under pressure in the presence of steam. Rather than burning, most of the carbon-containing feedstock is broken apart by chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but the exact composition can vary. In Integrated Gasification Combined Cycle (IGCC) systems, the syngas is cleaned and burned as fuel in a combustion turbine which then drives an electric generator. Exhaust heat from the combustion turbine is recovered and used to create steam for a steam turbine-generator. The use of these two types of turbines in combination is one reason why gasification-based power systems can achieve high power generation efficiencies. Currently, commercially available gasification-based systems can operate at around 40% efficiencies. Syngas, however, emits more greenhouse gases than natural gas, and almost twice as much carbon as a coal plant. Coal gasification is also water-intensive.

Lower-temperature fuel cell types such as the proton exchange membrane fuel cell, phosphoric acid fuel cell, and alkaline fuel cell require pure hydrogen as fuel, typically produced from external reforming of natural gas. However, fuels cells operating at high temperature such as the solid oxide fuel cell (SOFC) are not poisoned by carbon monoxide and carbon dioxide, and in fact can accept hydrogen, carbon monoxide, carbon dioxide, steam, and methane mixtures as fuel directly, because of their internal shift and reforming capabilities. This opens up the possibility of efficient fuel cell-based power cycles consuming solid fuels such as coal and biomass, the gasification of which results in syngas containing mostly hydrogen, carbon monoxide and methane which can be cleaned and fed directly to the SOFCs without the added cost and complexity of methane reforming, water gas shifting and hydrogen separation operations which would otherwise be needed to isolate pure hydrogen as fuel. A power cycle based on gasification of solid fuel and SOFCs is called an Integrated Gasification Fuel Cell (IGFC) cycle; the IGFC power plant is analogous to an integrated gasification combined cycle power plant, but with the gas turbine power generation unit replaced with a fuel cell power generation unit. By taking advantage of intrinsically high energy efficiency of SOFCs and process integration, exceptionally high power plant efficiencies are possible. Furthermore, SOFCs in the IGFC cycle can be operated so as to isolate a carbon dioxide-rich anodic exhaust stream, allowing efficient carbon capture to address greenhouse gas emissions concerns of coal-based power generation.

All Power Labs (APL) is a renewable energy company based in Berkeley, California. The firm designs and manufactures biomass gasifiers and builds and markets small-scale (15–150 kW) electrical generators fueled by these gasifiers. By 2013, they reached an installed base of 500 machines in approximately 40 countries; As of 2015, APL employed 30 staff, including engineering, manufacturing, management, sales, and technical support staff, on the site of the former Shipyard, an approximately 20,000 sq.ft. facility that includes APL’s offices, R&D, manufacturing and production facilities.

Denmark is a leading country in renewable energy production and usage. Renewable energy sources collectively produced 81% of Denmark's electricity generation in 2022, and are expected to provide 100% of national electric power production from 2030. Including energy use in the heating/cooling and transport sectors, Denmark is expected to reach 100% renewable energy in 2050, up from the 34% recorded in 2021.

References

  1. Greenhouse Gas Reduction Targets Act (GHGRTA)
  2. "Climate Action Plan" (PDF). sustain.ubc.ca. Retrieved 10 March 2015.
  3. "New Nexterra projects include biomass CHP". 14 May 2012.
  4. UBC Climate Action Plan
  5. building tune up program
  6. "CLIMATE ACTION PLAN" (PDF). sustain.ubc.ca. Retrieved 10 March 2015.
  7. "CLIMATE ACTION PLAN" . Retrieved 10 March 2015.
  8. "Followup: UBC generating heat, power, and buzz with renewable biomass-fueled CHP". www.districtenergy.org. Retrieved 10 March 2015.
  9. "GE's Jenbacher Gas Engines". clarke-energy.com.
  10. University of British Columbia. "RENEWABLE NATURAL GAS (RNG)". University of British Columbia. Retrieved 8 August 2021.
  11. "Advanced Biomass Gasification for Heat and Power Demonstration Project". 27 February 2013.

49°15′37″N120°15′15″W / 49.26028°N 120.25417°W / 49.26028; -120.25417