Upper motor neuron syndrome

Last updated

Upper motor neuron syndrome (UMNS) is the motor control changes that can occur in skeletal muscle after an upper motor neuron lesion.

Contents

Following upper motor neuron lesions, affected muscles potentially have many features of altered performance including:

Such signs are collectively termed the "upper motor neuron syndrome". Affected muscles typically show multiple signs, with severity depending on the degree of damage and other factors that influence motor control. In neuroanatomical circles, it is often joked, for example, that hemisection of the cervical spinal cord leads to an "upper lower motor neuron syndrome and a lower upper motor neuron syndrome". The saying refers to lower motor neuron symptoms in the upper extremity (arm) and upper motor neurons symptoms in the lower extremity (leg).

Health professionals' understanding of impairments in muscles after an upper motor neuron lesion has progressed considerably in recent decades. However, a diagnosis of "spasticity" is still often used interchangeably with upper motor neuron syndrome, and it is not unusual to see patients labeled as spastic who demonstrate an array of UMN findings. [1]

Spasticity is an exaggerated stretch reflex, which means that a muscle has a reflex contraction when stretched, and that this contraction is stronger when the stretch is applied more quickly. The commonly quoted definition by Lance (1980) describes "a motor disorder, characterised by a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks, resulting from hyper-excitability of the stretch reflex as one component of the upper motor neurone (UMN) syndrome".

Spasticity is a common feature of muscle performance after upper motor neuron lesions, but is generally of much less clinical significance than other features such as decreased strength, decreased control and decreased endurance. The confusion in the use of the terminology complicates assessment and treatment planning by health professionals, as many confuse the other findings of upper motor neuron syndrome and describe them as spasticity. [1] This confusion potentially leaves health professionals attempting to inhibit an exaggerated stretch reflex to improve muscle performance, potentially leaving more significant UMNS changes such as weakness unaddressed. Improved understanding of the multiple features of the upper motor neuron syndrome supports more rigorous assessment, and improved treatment planning.

Presentation

The upper motor neuron syndrome signs are seen in conditions where motor areas in the brain and/or spinal cord are damaged or fail to develop normally. These include spinal cord injury, cerebral palsy, multiple sclerosis and acquired brain injury including stroke. The impact of impairment of muscles for an individual is problems with movement, and posture, which often affects their function.

Diagnosis

Assessment of motor control may involve several health professionals depending on the affected individual's situation, and the severity of their condition. This may include physical therapists, physicians (including neurologists and physiatrists) and rehabilitation physicians, orthotists, occupational therapists, and speech-language pathologists. Assessment is needed of the affected individual's goals, their function, and any symptoms that may be related to the movement disorder, such as pain. A thorough assessment then uses a clinical reasoning approach to determine why difficulties are occurring. Elements of assessment will include analysis of posture, active movement, muscle strength, movement control and coordination, and endurance, as well as muscle tone and spasticity. Impaired muscles typically demonstrate a loss of selective movement, including a loss of eccentric control (decreased ability to actively lengthen); this decreased active lengthening of a muscle is a key factor that limits motor control. While multiple muscles in a limb are usually affected in the Upper Motor Neuron Syndrome, there is usually an imbalance of muscle activity (muscle tone), such that there is a stronger pull on one side of a joint, such as into elbow flexion. Decreasing the degree of this imbalance is a common focus of muscle strengthening programs. Impaired motor control also typically features a loss of stabilisation of an affected limb or the head from the trunk, so a thorough assessment requires this to be analysed as well, and exercise to improve proximal stability may be indicated.

Secondary effects are likely to impact on assessment of impaired muscles. If muscle tone is assessed with passive muscle lengthening, increased muscle stiffness may affect the feeling of resistance to passive stretch, in addition to neurological resistance to stretch. Other secondary changes such as loss of muscle fibres following acquired muscle weakness are likely to compound the weakness arising from the upper motor neuron lesion. In severely affected muscles, there may be marked secondary changes, such as muscle contracture, particularly if management has been delayed or absent.

Treatment

Treatment should be based on assessment by the relevant health professionals. For muscles with mild-to-moderate impairment, exercise should be the mainstay of management, and is likely to need to be prescribed by a physical therapist or other health professional skilled in neurological rehabilitation.

Muscles with severe impairment are likely to be more limited in their ability to exercise, and may require help to do this. They may require additional interventions, to manage the greater neurological impairment and also greater secondary complications. These interventions may include serial casting, flexibility exercise such as sustained positioning programs, and medical interventions.

Research has clearly shown that exercise is beneficial for impaired muscles, [2] even though it was previously believed that strength exercise would increase muscle tone and impair muscle performance further. Also, in previous decades there has been a strong focus on other interventions for impaired muscles, particularly stretching and splinting, but the evidence does not support these as effective. [3] One of the challenges for health professionals working with UMNS movement disorders is that the degree of muscle weakness makes developing an exercise programme difficult. For muscles that lack any volitional control, such as after complete spinal cord injury, exercise may be assisted, and may require equipment, such as using a standing frame to sustain a standing position. Often, muscles require specific stimulation to achieve small amounts of activity, which is most often achieved by weight-bearing (e.g. positioning and supporting a limb such that it supports body weight) or by stimulation to the muscle belly (such as electrical stimulation or vibration).

Medical interventions may include such medications as baclofen, diazepam, dantrolene, or clonazepam. Phenol injections or botulinum toxin [4] [5] injections into a muscle belly of the upper or lower extremities can be used to attempt to dampen the signals between nerve and muscle. The effectiveness of medications varies between individuals, and varies based on location of the upper motor neuron lesion (in the brain or the spinal cord). Medications are commonly used for movement disorders, but research has not shown functional benefit for some drugs. [6] [7] Some studies have shown that medications have been effective in decreasing spasticity, but that this has not been accompanied by functional benefits. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Motor neuron diseases</span> Group of neurological disorders affecting motor neurons

Motor neuron diseases or motor neurone diseases (MNDs) are a group of rare neurodegenerative disorders that selectively affect motor neurons, the cells which control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), pseudobulbar palsy, progressive muscular atrophy (PMA), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA) and monomelic amyotrophy (MMA), as well as some rarer variants resembling ALS.

Hemiparesis, also called unilateral paresis, is the weakness of one entire side of the body. Hemiplegia, in its most severe form, is the complete paralysis of one entire side of the body. Either hemiparesis or hemiplegia can result from a variety of medical causes, including congenital conditions, trauma, tumors, traumatic brain injury and stroke.

Spasticity is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.

<span class="mw-page-title-main">Tetraplegia</span> Paralysis of all four limbs and torso

Tetraplegia, also known as quadriplegia, is defined as the dysfunction or loss of motor and/or sensory function in the cervical area of the spinal cord. A loss of motor function can present as either weakness or paralysis leading to partial or total loss of function in the arms, legs, trunk, and pelvis. The paralysis may be flaccid or spastic. A loss of sensory function can present as an impairment or complete inability to sense light touch, pressure, heat, pinprick/pain, and proprioception. In these types of spinal cord injury, it is common to have a loss of both sensation and motor control.

Hereditary spastic paraplegia (HSP) is a group of inherited diseases whose main feature is a progressive gait disorder. The disease presents with progressive stiffness (spasticity) and contraction in the lower limbs. HSP is also known as hereditary spastic paraparesis, familial spastic paraplegia, French settlement disease, Strumpell disease, or Strumpell-Lorrain disease. The symptoms are a result of dysfunction of long axons in the spinal cord. The affected cells are the primary motor neurons; therefore, the disease is an upper motor neuron disease. HSP is not a form of cerebral palsy even though it physically may appear and behave much the same as spastic diplegia. The origin of HSP is different from cerebral palsy. Despite this, some of the same anti-spasticity medications used in spastic cerebral palsy are sometimes used to treat HSP symptoms.

<span class="mw-page-title-main">Pyramidal tracts</span> The corticobulbar tract and the corticospinal tract

The pyramidal tracts include both the corticobulbar tract and the corticospinal tract. These are aggregations of efferent nerve fibers from the upper motor neurons that travel from the cerebral cortex and terminate either in the brainstem (corticobulbar) or spinal cord (corticospinal) and are involved in the control of motor functions of the body.

<span class="mw-page-title-main">Clonus</span> Set of involuntary and rhythmic muscular contractions and relaxations

Clonus is a set of involuntary and rhythmic muscular contractions and relaxations. Clonus is a sign of certain neurological conditions, particularly associated with upper motor neuron lesions involving descending motor pathways, and in many cases is accompanied by spasticity. Unlike small spontaneous twitches known as fasciculations, clonus causes large motions that are usually initiated by a reflex. Studies have shown clonus beat frequency to range from three to eight Hz on average, and may last a few seconds to several minutes depending on the patient's condition.

Hypotonia is a state of low muscle tone, often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases and disorders that affect motor nerve control by the brain or muscle strength. Hypotonia is a lack of resistance to passive movement, whereas muscle weakness results in impaired active movement. Central hypotonia originates from the central nervous system, while peripheral hypotonia is related to problems within the spinal cord, peripheral nerves and/or skeletal muscles. Severe hypotonia in infancy is commonly known as floppy baby syndrome. Recognizing hypotonia, even in early infancy, is usually relatively straightforward, but diagnosing the underlying cause can be difficult and often unsuccessful. The long-term effects of hypotonia on a child's development and later life depend primarily on the severity of the muscle weakness and the nature of the cause. Some disorders have a specific treatment but the principal treatment for most hypotonia of idiopathic or neurologic cause is physical therapy and/or occupational therapy for remediation.

The primary goals of stroke management are to reduce brain injury and promote maximum patient recovery. Rapid detection and appropriate emergency medical care are essential for optimizing health outcomes. When available, patients are admitted to an acute stroke unit for treatment. These units specialize in providing medical and surgical care aimed at stabilizing the patient's medical status. Standardized assessments are also performed to aid in the development of an appropriate care plan. Current research suggests that stroke units may be effective in reducing in-hospital fatality rates and the length of hospital stays.

<span class="mw-page-title-main">Upper motor neuron lesion</span> Medical condition

An upper motor neuron lesion Is an injury or abnormality that occurs in the neural pathway above the anterior horn cell of the spinal cord or motor nuclei of the cranial nerves. Conversely, a lower motor neuron lesion affects nerve fibers traveling from the anterior horn of the spinal cord or the cranial motor nuclei to the relevant muscle(s).

In physiology, medicine, and anatomy, muscle tone is the continuous and passive partial contraction of the muscles, or the muscle's resistance to passive stretch during resting state. It helps to maintain posture and declines during REM sleep. Muscle tone is regulated by the activity of the motor neurons and can be affected by various factors, including age, disease, and nerve damage.

<span class="mw-page-title-main">Upper motor neuron</span> Neurons in the brain that carry signals to lower motor neurons

Upper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs represent the major origin point for voluntary somatic movement.

<span class="mw-page-title-main">Monoplegia</span> Paralysis of a single limb

Monoplegia is paralysis of a single limb, usually an arm. Common symptoms associated with monoplegic patients are weakness, numbness, and pain in the affected limb. Monoplegia is a type of paralysis that falls under hemiplegia. While hemiplegia is paralysis of half of the body, monoplegia is localized to a single limb or to a specific region of the body. Monoplegia of the upper limb is sometimes referred to as brachial monoplegia, and that of the lower limb is called crural monoplegia. Monoplegia in the lower extremities is not as common of an occurrence as in the upper extremities. Monoparesis is a similar, but less severe, condition because one limb is very weak, not paralyzed. For more information, see paresis.

Hypertonia is a term sometimes used synonymously with spasticity and rigidity in the literature surrounding damage to the central nervous system, namely upper motor neuron lesions. Impaired ability of damaged motor neurons to regulate descending pathways gives rise to disordered spinal reflexes, increased excitability of muscle spindles, and decreased synaptic inhibition. These consequences result in abnormally increased muscle tone of symptomatic muscles. Some authors suggest that the current definition for spasticity, the velocity-dependent over-activity of the stretch reflex, is not sufficient as it fails to take into account patients exhibiting increased muscle tone in the absence of stretch reflex over-activity. They instead suggest that "reversible hypertonia" is more appropriate and represents a treatable condition that is responsive to various therapy modalities like drug or physical therapy.

<span class="mw-page-title-main">Stretch reflex</span> Muscle contraction in response to stretching

The stretch reflex, or more accurately "muscle stretch reflex", is a muscle contraction in response to stretching a muscle. The function of the reflex is generally thought to be maintaining the muscle at a constant length but the response is often coordinated across multiple muscles and even joints. The older term deep tendon reflex is now criticized as misleading. Tendons have little to do with the response, and some muscles with stretch reflexes have no tendons. Rather, muscle spindles detect a stretch and convey the information to the central nervous system.

<span class="mw-page-title-main">Alpha motor neuron</span> Large lower motor neurons of the brainstem and spinal cord

Alpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate intrafusal muscle fibers of muscle spindles.

<span class="mw-page-title-main">Lower motor neuron lesion</span> Medical condition

A lower motor neuron lesion is a lesion which affects nerve fibers traveling from the lower motor neuron(s) in the anterior horn/anterior grey column of the spinal cord, or in the motor nuclei of the cranial nerves, to the relevant muscle(s).

<span class="mw-page-title-main">Spastic cerebral palsy</span> Cerebral palsy characterized by high muscle tone

Spastic cerebral palsy is the type of cerebral palsy characterized by spasticity or high muscle tone often resulting in stiff, jerky movements. Cases of spastic CP are further classified according to the part or parts of the body that are most affected. Such classifications include spastic diplegia, spastic hemiplegia, spastic quadriplegia, and in cases of single limb involvement, spastic monoplegia.

<span class="mw-page-title-main">Spastic hemiplegia</span> Medical condition

Spastic hemiplegia is a neuromuscular condition of spasticity that results in the muscles on one side of the body being in a constant state of contraction. It is the "one-sided version" of spastic diplegia. It falls under the mobility impairment umbrella of cerebral palsy. About 20–30% of people with cerebral palsy have spastic hemiplegia. Due to brain or nerve damage, the brain is constantly sending action potentials to the neuromuscular junctions on the affected side of the body. Similar to strokes, damage on the left side of the brain affects the right side of the body and damage on the right side of the brain affects the left side of the body. Other side can be effected for lesser extent. The affected side of the body is rigid, weak and has low functional abilities. In most cases, the upper extremity is much more affected than the lower extremity. This could be due to preference of hand usage during early development. If both arms are affected, the condition is referred to as double hemiplegia. Some patients with spastic hemiplegia only experience minor impairments, where in severe cases one side of the body could be completely paralyzed. The severity of spastic hemiplegia is dependent upon the degree of the brain or nerve damage.

Alternating hemiplegia is a form of hemiplegia that has an ipsilateral cranial nerve palsies and contralateral hemiplegia or hemiparesis of extremities of the body. The disorder is characterized by recurrent episodes of paralysis on one side of the body. There are multiple forms of alternating hemiplegia, Weber's syndrome, middle alternating hemiplegia, and inferior alternating hemiplegia. This type of syndrome can result from a unilateral lesion in the brainstem affecting both upper motor neurons and lower motor neurons. The muscles that would receive signals from these damaged upper motor neurons result in spastic paralysis. With a lesion in the brainstem, this affects the majority of limb and trunk muscles on the contralateral side due to the upper motor neurons decussation after the brainstem. The cranial nerves and cranial nerve nuclei are also located in the brainstem making them susceptible to damage from a brainstem lesion. Cranial nerves III (Oculomotor), VI (Abducens), and XII (Hypoglossal) are most often associated with this syndrome given their close proximity with the pyramidal tract, the location which upper motor neurons are in on their way to the spinal cord. Damages to these structures produce the ipsilateral presentation of paralysis or palsy due to the lack of cranial nerve decussation before innervating their target muscles. The paralysis may be brief or it may last for several days, many times the episodes will resolve after sleep. Some common symptoms of alternating hemiplegia are mental impairment, gait and balance difficulties, excessive sweating and changes in body temperature.

References

  1. 1 2 Ivanhoe CB, Reistetter TA: Spasticity: The misunderstood part of the upper motor neuron syndrome. Am J Phys Med Rehabil 2004;83(suppl):S3–S9.
  2. Ada L, Dorsch S, Canning C G. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Australian Journal of Physiotherapy. 2006;52(4):241–248.
  3. Bovend'Eerdt TJ, Newman M, Barker K, Dawes H, Minelli C, Wade DT. The effects of stretching in spasticity: a systematic review. Arch Phys Med Rehabil. 2008 Jul;89(7):1395-406.
  4. Farag, Sara M.; Mohammed, Manal O.; EL-Sobky, Tamer A.; ElKadery, Nadia A.; ElZohiery, Abeer K. (March 2020). "Botulinum Toxin A Injection in Treatment of Upper Limb Spasticity in Children with Cerebral Palsy". JBJS Reviews. 8 (3): e0119. doi: 10.2106/JBJS.RVW.19.00119 . PMC   7161716 . PMID   32224633.
  5. Blumetti, Francesco C; Belloti, João Carlos; Tamaoki, Marcel JS; Pinto, José A (8 October 2019). "Botulinum toxin type A in the treatment of lower limb spasticity in children with cerebral palsy". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD001408.pub2. PMC   6779591 . PMID   31591703.
  6. 1 2 Taricco M, Adone R, Pagliacci C, Telaro E. Pharmacological interventions for spasticity following spinal cord injury. Cochrane Database of Systematic Reviews 2000, Issue 2. Art. No.: CD001131.
  7. Shakespeare D, Boggild M, Young CA. Anti-spasticity agents for multiple sclerosis. Cochrane Database of Systematic Reviews 2003, Issue 4. Art. No.: CD001332.