Uraina Clark

Last updated
Uraina Simone Clark
Alma mater Boston University (PhD)
Scientific career
Institutions Icahn School of Medicine at Mount Sinai
Thesis Facial emotion recognition in Parkinson's disease  (2008)

Uraina Simone Clark is an American neuroscientist and Director of the Neuropsychology and Neuroimaging Laboratory at the Icahn School of Medicine at Mount Sinai. Her research makes use of functional magnetic resonance imaging to understand how stressors impact brain and behaviour. She has studied the impact of discrimination on brain function, and shown that social discrimination results in an increase in amygdala function.

Contents

Early life and education

In college Clark worked in several research labs, which taught her "the transformative potential of science" and inspired her towards a career in research. [1] She is related to Dr. Richard A. Smith, a physician who worked in the US Surgeon General's Office of Equal Health Opportunity and oversaw the desegregation of US hospitals in the 1960s. [1] Clark earned her doctoral degree at Boston University, where she studied the recognition of facial emotions in Parkinson's disease. [2] She was a clinical intern in the Brown University clinical psychology consortium. Here she studied the impact of early life stress on the neural dysfunction of people with HIV. [3]

Research and career

Clark studies how brain function impacts behaviour. She has studied the effects of HIV infection and adverse life experiences influence brain structure and function. [4] In 2016 Clark was awarded the Medical Research Council Suffrage Science award. [5]

Clark has also studied the impact of discrimination on people's physical and mental health. She used functional magnetic resonance imaging to understand the impact of discrimination on brain function. As part of this effort, she showed that social discrimination results in an increase in amygdala function. [6] During the COVID-19 pandemic it became apparent that Black, indigenous or people of colour (BIPOC) were most likely to develop severe forms of coronavirus disease. Clark argued that the biomedical science community must employ anti-racism approaches, coupling new policies with systems of accountability. [7]

In 2021 Clark was included in the "Life Sciences Power 50" list of scientists, entrepreneurs and investors driving New York State's biotech boom by City & State NY. [8]

Select publications

Related Research Articles

<span class="mw-page-title-main">Basal ganglia</span> Group of subcortical nuclei involved in the motor and reward systems

The basal ganglia (BG) or basal nuclei are a group of subcortical nuclei found in the brains of vertebrates. In humans and other primates, differences exist, primarily in the division of the globus pallidus into external and internal regions, and in the division of the striatum. Positioned at the base of the forebrain and the top of the midbrain, they have strong connections with the cerebral cortex, thalamus, brainstem and other brain areas. The basal ganglia are associated with a variety of functions, including regulating voluntary motor movements, procedural learning, habit formation, conditional learning, eye movements, cognition, and emotion.

<span class="mw-page-title-main">Amygdala</span> Each of two small structures deep within the temporal lobe of complex vertebrates

The amygdala is a paired nuclear complex present in the cerebral hemispheres of vertebrates. It is considered part of the limbic system. In primates, it is located medially within the temporal lobes. It consists of many nuclei, each made up of further subnuclei. The subdivision most commonly made is into the basolateral, central, cortical, and medial nuclei together with the intercalated cell clusters. The amygdala has a primary role in the processing of memory, decision-making, and emotional responses. The amygdala was first identified and named by Karl Friedrich Burdach in 1822.

<span class="mw-page-title-main">Limbic system</span> Set of brain structures involved in emotion and motivation

The limbic system, also known as the paleomammalian cortex, is a set of brain structures located on both sides of the thalamus, immediately beneath the medial temporal lobe of the cerebrum primarily in the forebrain.

<span class="mw-page-title-main">Face perception</span> Cognitive process of visually interpreting the human face

Facial perception is an individual's understanding and interpretation of the face. Here, perception implies the presence of consciousness and hence excludes automated facial recognition systems. Although facial recognition is found in other species, this article focuses on facial perception in humans.

<span class="mw-page-title-main">Olfactory system</span> Sensory system used for smelling

The olfactory system or sense of smell is the sensory system used for smelling (olfaction). Olfaction is one of the special senses, that have directly associated specific organs. Most mammals and reptiles have a main olfactory system and an accessory olfactory system. The main olfactory system detects airborne substances, while the accessory system senses fluid-phase stimuli.

Affective neuroscience is the study of how the brain processes emotions. This field combines neuroscience with the psychological study of personality, emotion, and mood. The basis of emotions and what emotions are remains an issue of debate within the field of affective neuroscience.

HIV-associated neurocognitive disorders (HAND) are neurological disorders associated with HIV infection and AIDS. It is a syndrome of progressive deterioration of memory, cognition, behavior, and motor function in HIV-infected individuals during the late stages of the disease, when immunodeficiency is severe. HAND may include neurological disorders of various severity. HIV-associated neurocognitive disorders are associated with a metabolic encephalopathy induced by HIV infection and fueled by immune activation of macrophages and microglia. These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of HIV-associated dementia (HAD) are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss.

Memory disorders are the result of damage to neuroanatomical structures that hinders the storage, retention and recollection of memories. Memory disorders can be progressive, including Alzheimer's disease, or they can be immediate including disorders resulting from head injury.

<span class="mw-page-title-main">Orbitofrontal cortex</span> Region of the prefrontal cortex of the brain

The orbitofrontal cortex (OFC) is a prefrontal cortex region in the frontal lobes of the brain which is involved in the cognitive process of decision-making. In non-human primates it consists of the association cortex areas Brodmann area 11, 12 and 13; in humans it consists of Brodmann area 10, 11 and 47.

<span class="mw-page-title-main">Ventromedial prefrontal cortex</span> Body part

The ventromedial prefrontal cortex (vmPFC) is a part of the prefrontal cortex in the mammalian brain. The ventral medial prefrontal is located in the frontal lobe at the bottom of the cerebral hemispheres and is implicated in the processing of risk and fear, as it is critical in the regulation of amygdala activity in humans. It also plays a role in the inhibition of emotional responses, and in the process of decision-making and self-control. It is also involved in the cognitive evaluation of morality.

Memory and trauma is the deleterious effects that physical or psychological trauma has on memory.

<span class="mw-page-title-main">Neurological disorder</span> Any disorder of the nervous system

A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain, tauopathies, and altered levels of consciousness. There are many recognized neurological disorders, some are relatively common, but many are rare.

Olfactory memory refers to the recollection of odors. Studies have found various characteristics of common memories of odor memory including persistence and high resistance to interference. Explicit memory is typically the form focused on in the studies of olfactory memory, though implicit forms of memory certainly supply distinct contributions to the understanding of odors and memories of them. Research has demonstrated that the changes to the olfactory bulb and main olfactory system following birth are extremely important and influential for maternal behavior. Mammalian olfactory cues play an important role in the coordination of the mother infant bond, and the following normal development of the offspring. Maternal breast odors are individually distinctive, and provide a basis for recognition of the mother by her offspring.

Sophia Frangou is a professor of psychiatry at the Icahn School of Medicine at Mount Sinai where she heads the Psychosis Research Program. She is a Fellow of the Royal College of Psychiatrists and vice-chair of the RCPsych Panamerican Division. She is a Fellow of the European Psychiatric Association (EPA) and of the American Psychiatric Association (APA). She served as vice-president for Research of the International Society for Bipolar Disorders from 2010 to 2014. She has also served on the Council of the British Association for Psychopharmacology. She is founding member of the EPA NeuroImaging section and founding chair of the Brain Imaging Network of the European College of Neuropsychopharmacology. She is one of the two Editors of European Psychiatry, the official Journal of the European Psychiatric Association.

<span class="mw-page-title-main">Neuroscience of sex differences</span> Characteristics of the brain that differentiate the male brain and the female brain

The neuroscience of sex differences is the study of characteristics that separate brains of different sexes. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan. A 2021 meta-synthesis led by Lise Eliot found that sex accounted for 1% of the brain's structure or laterality, finding large group-level differences only in total brain volume. A subsequent 2021 led by Camille Michèle Williams contradicted Eliot's conclusions, finding that sex differences in total brain volume are not accounted for merely by sex differences in height and weight, and that once global brain size is taken into account, there remain numerous regional sex differences in both directions. A 2022 follow-up meta-analysis led by Alex DeCasien analyzed the studies from both Eliot and Williams, concluding that "The human brain shows highly reproducible sex differences in regional brain anatomy above and beyond sex differences in overall brain size" and that these differences are of a "small-moderate effect size." A review from 2006 and a meta-analysis from 2014 found that some evidence from brain morphology and function studies indicates that male and female brains cannot always be assumed to be identical from either a structural or functional perspective, and some brain structures are sexually dimorphic.

Alcohol-related brain damage alters both the structure and function of the brain as a result of the direct neurotoxic effects of alcohol intoxication or acute alcohol withdrawal. Increased alcohol intake is associated with damage to brain regions including the frontal lobe, limbic system, and cerebellum, with widespread cerebral atrophy, or brain shrinkage caused by neuron degeneration. This damage can be seen on neuroimaging scans.

<span class="mw-page-title-main">Biology of bipolar disorder</span> Biological Study Of Bipolar Disorder

Bipolar disorder is an affective disorder characterized by periods of elevated and depressed mood. The cause and mechanism of bipolar disorder is not yet known, and the study of its biological origins is ongoing. Although no single gene causes the disorder, a number of genes are linked to increase risk of the disorder, and various gene environment interactions may play a role in predisposing individuals to developing bipolar disorder. Neuroimaging and postmortem studies have found abnormalities in a variety of brain regions, and most commonly implicated regions include the ventral prefrontal cortex and amygdala. Dysfunction in emotional circuits located in these regions have been hypothesized as a mechanism for bipolar disorder. A number of lines of evidence suggests abnormalities in neurotransmission, intracellular signalling, and cellular functioning as possibly playing a role in bipolar disorder.

The occipital face area (OFA) is a region of the human cerebral cortex which is specialised for face perception. The OFA is located on the lateral surface of the occipital lobe adjacent to the inferior occipital gyrus. The OFA comprises a network of brain regions including the fusiform face area (FFA) and posterior superior temporal sulcus (STS) which support facial processing.

Sharlene D. Newman is an American cognitive neuroscientist, executive director of the Alabama Life Research Institute at the University of Alabama (UA), Professor in the Department of Psychology at UA, and an adjunct professor in the Department of Psychological and Brain Sciences at Indiana University.

Angela Charlotte Roberts is a British neurobiologist who is a professor of physiology at the University of Cambridge. Her research considers the neural circuits that underpin cognition and emotion. She leads the Cambridge Marmoset Research Centre. She was awarded the 2020 Goldman-Rakic Prize for Outstanding Achievement in Cognitive Neuroscience.

References

  1. 1 2 "Dr Uraina Clark". 2022 Stem Mentor. Retrieved 30 March 2022.
  2. Clark, Uraina Simone (2008). Facial emotion recognition in Parkinson's disease (Thesis). OCLC   437263923.
  3. Clark, Uraina. "Effects of Early-Life Stress on Brain Dysfunction in HIV+ Adults: An fMRI Study".{{cite journal}}: Cite journal requires |journal= (help)
  4. "Team | Clark Laboratory". labs.icahn.mssm.edu. Retrieved 2020-07-26.
  5. "Suffrage Science: awards night speeches 2016". LMS London Institute of Medical Sciences. Retrieved 2020-07-26.
  6. "Uraina Clark, PhD". Black in Neuro. Retrieved 2020-07-26.
  7. Clark, Uraina S.; Hurd, Yasmin L. (2020-07-10). "Addressing racism and disparities in the biomedical sciences". Nature Human Behaviour. 4 (8): 774–777. doi: 10.1038/s41562-020-0917-7 . ISSN   2397-3374. PMID   32651473.
  8. "Life Sciences Power 50 2021". City & State NY. 2 August 2021. Retrieved 2021-09-10.