V1-morph

Last updated

An V1-morph is an organism that changes in shape during growth such that its surface area is proportional to its volume. [1] In most cases both volume and surface area are proportional to length

The reason the concept is important in the context of the Dynamic Energy Budget theory is that food (substrate) uptake is proportional to surface area, and maintenance to volume. The surface area that is of importance is that part that is involved in substrate uptake. Since uptake is proportional to maintenance for V1-morphs, there is no size control, and an organism grows exponentially at constant food (substrate) availability.

Filaments, such as fungi that form hyphae growing in length, but not in diameter, are examples of V1-morphs. Sheets that extend, but do not change in thickness, like some colonial bacteria and algae, are another example.

An important property of V1-morphs is that the distinction between the individual and the population level disappears; a single long filament grows as fast as many small ones of the same diameter and the same total length.

See also

Related Research Articles

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components, microfilaments, intermediate filaments and microtubules, and these are all capable of rapid growth or disassembly dependent on the cell's requirements.

<span class="mw-page-title-main">Microvillus</span> Microscopic protrusion of a cell membrane that increases surface area substantially

Microvilli are microscopic cellular membrane protrusions that increase the surface area for diffusion and minimize any increase in volume, and are involved in a wide variety of functions, including absorption, secretion, cellular adhesion, and mechanotransduction.

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship. Lichens are important actors in nutrient cycling and act as producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose); flat leaf-like structures (foliose); grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose); have a powder-like appearance (leprose); or other growth forms.

<span class="mw-page-title-main">Allometry</span> Study of the relationship of body size to shape, anatomy, physiology, and behavior

Allometry is the study of the relationship of body size to shape, anatomy, physiology and finally behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

<span class="mw-page-title-main">Algal mat</span> Microbial mat that forms on the surface of water or rocks

Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.

The dynamic energy budget (DEB) theory is a formal metabolic theory which provides a single quantitative framework to dynamically describe the aspects of metabolism of all living organisms at the individual level, based on assumptions about energy uptake, storage, and utilization of various substances. The DEB theory adheres to stringent thermodynamic principles, is motivated by universally observed patterns, is non-species specific, and links different levels of biological organization as prescribed by the implications of energetics. Models based on the DEB theory have been successfully applied to over a 1000 species with real-life applications ranging from conservation, aquaculture, general ecology, and ecotoxicology. The theory is contributing to the theoretical underpinning of the emerging field of metabolic ecology.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

The bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.

An isomorph is an organism that does not change in shape during growth. The implication is that its volume is proportional to its cubed length, and its surface area to its squared length. This holds for any shape it might have; the actual shape determines the proportionality constants.

A V0-morph is an organism whose surface area remains constant as the organism grows.

The shape correction function is a ratio of the surface area of a growing organism and that of an isomorph as function of the volume. The shape of the isomorph is taken to be equal to that of the organism for a given reference volume, so for that particular volume the surface areas are also equal and the shape correction function has value one.

Dynamic reserve, in the context of the dynamic energy budget theory, refers to the set of metabolites that an organism can use for metabolic purposes. These chemical compounds can have active metabolic functions, however. They are not just "set apart for later use." Reserve differs from structure in the first place by its dynamics. Reserve has an implied turnover, because it is synthesized from food and used by metabolic processes occurring in cells. The turnover of structure depends on the maintenance of an organism. Maintenance is not required for reserve. A freshly laid egg consists almost exclusively of reserve, and hardly respires. The chemical compounds in the reserve have the same turnover, while that in the structure can have a different turnover, and so it depends on the compound.

<span class="mw-page-title-main">Surface-area-to-volume ratio</span> Surface area per unit volume

The surface-area-to-volume ratio (surface-to-volume ratio, denoted as sa/vol, SA/V or SA:V, is the amount of surface area per unit volume of an object or collection of objects.

The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation.

<i>Thioploca</i> Genus of bacteria

Thioploca is a genus of filamentous sulphur-oxidizing bacteria which occurs along 3,000 kilometres (1,900 mi) of coast off the west of South America. Was discovered in 1907 by R. Lauterborn classified as belonging to the order Thiotrichales, part of the Gammaproteobacteria. They inhabit as well marine as freshwater environments, with vast communities present off the Pacific coast of South America and other areas with a high organic matter sedimentation and bottom waters rich in nitrate and poor in oxygen. A large vacuole occupies more than 80% of their cellular volume and is used as a storage for nitrate. This nitrate is used for the sulphur oxidation, an important characteristic of the genus. Due to their unique size in diameters, ranging from 15-40 µm, they are considered part of the largest bacteria known. Because they use both sulfur and nitrogen compounds they may provide an important link between the nitrogen and sulphur cycles. They secrete a sheath of mucus which they use as a tunnel to travel between the sulfide containing sediment and the nitrate containing sea water.

<span class="mw-page-title-main">Marine habitats</span> Habitat that supports marine life

Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats. Marine habitats can be divided into coastal and open ocean habitats. Coastal habitats are found in the area that extends from as far as the tide comes in on the shoreline out to the edge of the continental shelf. Most marine life is found in coastal habitats, even though the shelf area occupies only seven percent of the total ocean area. Open ocean habitats are found in the deep ocean beyond the edge of the continental shelf.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

References

  1. Kooijman SA (March 2001). "Quantitative aspects of metabolic organization: a discussion of concepts". Philosophical Transactions of the Royal Society B. 356 (1407): 331–349. doi:10.1098/rstb.2000.0771. PMC   1088431 . PMID   11316483.