VATS lobectomy

Last updated
VATS lobectomy
Specialty surgical oncology

Video-assisted thoracoscopic surgery (VATS) lobectomy is an approach to lung cancer surgery.

Contents

Thoracotomy

Dissection of the right superior pulmonary vein with VATS Right upper lobe vein dissection.JPG
Dissection of the right superior pulmonary vein with VATS
Dissection of the anterior trunk of the right pulmonary artery with VATS Anterior trunk artery dissection.JPG
Dissection of the anterior trunk of the right pulmonary artery with VATS
Preparing to divide the anterior trunk of the right pulmonary artery with the endoscopic stapler Stapler anterior trunk.JPG
Preparing to divide the anterior trunk of the right pulmonary artery with the endoscopic stapler
Placing the resected lobe into a water-tight bag for removal from the chest Specimen into bag.JPG
Placing the resected lobe into a water-tight bag for removal from the chest

Anatomic lung resection, i.e. pulmonary lobectomy or pneumonectomy, in conjunction with removal of the lymph nodes from the mediastinum is the treatment modality that provides the greatest chance of long-term survival in patients with early stage non-small cell lung cancer. Anatomic lung resections require a dissection of the pulmonary hilum with individual ligation and division of the pulmonary artery, pulmonary vein, and the bronchus where these enter the lung. In the setting of lung cancer, the rationale for anatomic lung resection is a complete removal of a lung tumor along with the lymphatics that drain that tumor to assure that any tumor cells present in the lymphatics will also be removed; lesser resections have been shown to be associated with a higher risk of local recurrence and diminished long-term survival. A cornerstone of surgical treatment of early stage lung cancer is aggressive removal of lymph nodes from the mediastinum; this enhances the likelihood of removing all cancer cells (complete resection) and identifies patients who will require additional treatment (i.e. adjuvant chemotherapy). An important consideration when performing anatomic lung resection is to spare as much lung tissue as possible; while lobectomy and pneumonectomy are equivalent cancer operations, the risk of complications and morbidity is considerably less with lobectomy. [1]

Traditionally, pulmonary lobectomy is performed through a poster-lateral thoracotomy incision; over decades, thoracotomy has demonstrated its effectiveness in providing access to structures in the thorax and is in general tolerated by patients. Thoracotomy, as most commonly performed, requires cutting through one or more major muscles of the chest wall including the latissimus dorsi, pectoralis or serratus muscles, and spreading of the ribs with a rib spreader. Because the joints of the ribs with the vertebral bodies have only limited flexibility, the use of a rib spreader usually results in rib fracture in the process of rendering the interspace between the ribs wide enough to perform a pulmonary lobectomy. Because of this, thoracic surgeons generally intentionally remove a section of one or more ribs in an effort to prevent splintered rib fracture associated with the use of the rib spreader. There is wide consensus that thoracotomy is one of the most painful incisions that patients can undergo. In the initial post-operative setting after thoracotomy, the use of epidural catheters, patient-controlled analgesia pumps for intravenous narcotic administration, and intravenous ketorolac are commonplace and patients generally require a 7- to 10-day hospital stay before their pain is adequately controlled with oral opioid analgesics that they can take at home. A great deal of emphasis is placed on post-operative pulmonary toilet because the incisional pain associated with thoracotomy leads to a decreased ability of patients to cough and clear bronchial secretions, which in turn leads to an increased risk of persistent atelectasis (collapsed areas of lung) or pneumonia. Finally, to allow time for the divided muscles and bone fractures to heal, patients must refrain from strenuous activity or lifting greater than 5 lbs for 6 weeks after surgery. [2]

History

Video-assisted thoracoscopic surgery, or VATS, came into widespread use in the 1990s and early on in its development practitioners began to perform lobectomy via VATS incisions. [3] The advantage of VATS over thoracotomy is that major chest wall muscles are not divided and ribs are not spread. This leads to reductions in the intensity and duration of post-operative pain and allows patients to return to full activity more quickly.

For lung cancer

VATS lobectomy is the same as lobectomy performed via thoracotomy in that the pulmonary artery, pulmonary vein, and bronchus to the involved pulmonary lobe are individually dissected, ligated and divided. Generally, endoscopic stapling devices are used to ligate and divide the vessels and the bronchus however conventional suture material can also be used. During VATS lobectomy, the structures being operated on are not directly visualized with the naked eye but are visualized solely with a rigid thoracoscope. A camera attached to the thoracoscope transmits the image to a video screen, which allows surgeons and assistants to observe the flow of the operation. Surgical specimens are placed into a water-tight bag and removed from the chest without morcellization (i.e. breaking up the specimen into small pieces before removal); this prevents seeding of the VATS incisions with tumor cells and allows for an intact specimen for pathology examination and cancer staging. Removal of lymph nodes from the mediastinum is not compromised by VATS and remains a cornerstone of the surgical therapy of lung cancer. Visualization is enhanced due to the magnification afforded by the fiberoptic thoracoscope and a 30-degree angle of visualization aids in looking around corners. However, because the incisions are too small to allow passage of the surgeon's hands into the thorax, the surgeon's tactile input is compromised. VATS operations rely on a thorough understanding of pulmonary anatomy to allow for strategically placed incisions (usually 3–5 incisions total). The main advantages of VATS over thoracotomy are that major muscles of the chest wall are not divided and rib spreaders that can lead to rib fractures or costovertebral joint pain are not used. This results in a hospital length of stay after VATS lobectomy generally reported to range from 3–5 days, [4] or roughly half that for lobectomy via thoracotomy.

Candidates

Not all patients are candidates for VATS lobectomy. The classic indication for a VATS approach to lobectomy is early stage lung cancer in which the primary tumor is 3 cm or less in diameter and located toward the periphery of the lung parenchyma. Tumors that are located close to the major blood vessels or airway where these enter the lung or larger tumors associated with tumor spread to lymph nodes in the central regions of the lung may require the enhanced tactile input afforded by thoracotomy to make sure the tumors are resected with a negative margin, i.e. that the tumor is surrounded completely by a margin of non-cancerous tissue, and that arteries and airways to portions of the lung that are not being removed are preserved intact. In addition, patients who have had pre-operative chemotherapy or radiation for lung cancer or previous chest surgeries may not be candidates for VATS due to scarring around the major blood vessels that makes dissection via VATS difficult. But recent evidence suggests that thoracoscopic lobectomy is a feasible approach for selected patients undergoing resection after induction therapy, and is associated with shorter hospital stay and chest tube duration. [5] Cases in which a lung tumor invades the chest wall and an en bloc resection of ribs must be performed to achieve negative resection margins generally are felt to abrogate the value of VATS. Also pneumonectomy by VATS is a safe and feasible treatment for both benign and malignant lung diseases that induces acceptable damage and has lower morbidity. [6]

Published benefits

Because of the lesser chest wall trauma of VATS compared to thoracotomy, elderly patients have been shown to tolerate lobectomy by VATS better than via thoracotomy. [7] Patients who require chemotherapy after surgery have been shown to be more likely to succeed in completing the prescribed course of chemotherapy after VATS lobectomy compared to lobectomy via thoracotomy. [8] Along with the lesser chest wall trauma and improved pulmonary mechanics, a lesser level of cytokine disturbance has been reported after VATS lobectomy compared to thoracotomy. [9] From the standpoint of medical economics, VATS lobectomy is less expensive than lobectomy performed via thoracotomy because hospital length of stay and number of days in the intensive care unit are significantly reduced. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Lung cancer</span> Malignant tumor characterized by uncontrolled cell growth in lung tissue

Lung cancer, also known as lung carcinoma, is a malignant tumor that begins in the lung. Lung cancer is caused by genetic damage to the DNA of cells in the airways, often caused by cigarette smoking or inhaling damaging chemicals. Damaged airway cells gain the ability to multiply unchecked, causing the growth of a tumor. Without treatment, tumors spread throughout the lung, damaging lung function. Eventually lung tumors metastasize, spreading to other parts of the body.

<span class="mw-page-title-main">Cardiothoracic surgery</span> Medical specialty involved in surgical treatment of organs inside the thorax

Cardiothoracic surgery is the field of medicine involved in surgical treatment of organs inside the thoracic cavity — generally treatment of conditions of the heart, lungs, and other pleural or mediastinal structures.

<span class="mw-page-title-main">Pancoast tumor</span> Medical condition

A Pancoast tumor is a tumor of the apex of the lung. It is a type of lung cancer defined primarily by its location situated at the top end of either the right or left lung. It typically spreads to nearby tissues such as the ribs and vertebrae. Most Pancoast tumors are non-small-cell lung cancers.

<span class="mw-page-title-main">Thoracotomy</span> Surgical procedure

A thoracotomy is a surgical procedure to gain access into the pleural space of the chest. It is performed by surgeons to gain access to the thoracic organs, most commonly the heart, the lungs, or the esophagus, or for access to the thoracic aorta or the anterior spine. A thoracotomy is the first step in thoracic surgeries including lobectomy or pneumonectomy for lung cancer or to gain thoracic access in major trauma.

<span class="mw-page-title-main">Atelectasis</span> Collapse or closure of a lung resulting in reduced or absent gas exchange

Atelectasis is the collapse or closure of a lung resulting in reduced or absent gas exchange. It is usually unilateral, affecting part or all of one lung. It is a condition where the alveoli are deflated down to little or no volume, as distinct from pulmonary consolidation, in which they are filled with liquid. It is often called a collapsed lung, although that term may also refer to pneumothorax.

<span class="mw-page-title-main">Pneumonectomy</span> Surgical removal of a lung

A pneumonectomy is a surgical procedure to remove a lung. It was first successfully performed in 1933 by Dr. Evarts Graham. This is not to be confused with a lobectomy or segmentectomy, which only removes one part of the lung.

<span class="mw-page-title-main">Lobectomy</span> Surgical excision of a lobe

Lobectomy means surgical excision of a lobe. This may refer to a lobe of the lung, a lobe of the thyroid (hemithyroidectomy), a lobe of the brain, or a lobe of the liver (hepatectomy).

<span class="mw-page-title-main">Mediastinal tumors</span> Medical condition

A mediastinal tumor is a tumor in the mediastinum, the cavity that separates the lungs from the rest of the chest. It contains the heart, esophagus, trachea, thymus, and aorta. The most common mediastinal masses are neurogenic tumors, usually found in the posterior mediastinum, followed by thymoma (15–20%) located in the anterior mediastinum. Lung cancer typically spreads to the lymph nodes in the mediastinum.

<span class="mw-page-title-main">Thoracoscopy</span> Internal medical examination

Thoracoscopy is a medical procedure involving internal examination, biopsy and/or resection/drainage of disease or masses within the pleural cavity, usually with video assistance. Thoracoscopy may be performed either under general anaesthesia or under sedation with local anaesthetic.

Lobectomy of the lung is a surgical operation where a lobe of the lung is removed. It is done to remove a portion of diseased lung, such as early stage lung cancer.

<span class="mw-page-title-main">Thymic carcinoma</span> Medical condition

Thymic carcinoma, or type C thymoma, is a malignancy of the thymus. It is a rare cancer that is often diagnosed at advanced stages. Recurrence following treatment is common, and thymic carcinoma is associated with a poor prognosis.

Lung cancer staging is the assessment of the extent to which a lung cancer has spread from its original source. As with most cancers, staging is an important determinant of treatment and prognosis. In general, more advanced stages of cancer are less amenable to treatment and have a worse prognosis.

<span class="mw-page-title-main">Video-assisted thoracoscopic surgery</span>

Video-assisted thoracoscopic surgery (VATS) is a type of minimally invasive thoracic surgery performed using a small video camera mounted to a fiberoptic thoracoscope, with or without angulated visualization, which allows the surgeon to see inside the chest by viewing the video images relayed onto a television screen, and perform procedures using elongated surgical instruments. The camera and instruments are inserted into the patient's chest cavity through small incisions in the chest wall, usually via specially designed guiding tubes known as "ports".

<span class="mw-page-title-main">Adenocarcinoma of the lung</span> Medical condition

Adenocarcinoma of the lung is the most common type of lung cancer, and like other forms of lung cancer, it is characterized by distinct cellular and molecular features. It is classified as one of several non-small cell lung cancers (NSCLC), to distinguish it from small cell lung cancer which has a different behavior and prognosis. Lung adenocarcinoma is further classified into several subtypes and variants. The signs and symptoms of this specific type of lung cancer are similar to other forms of lung cancer, and patients most commonly complain of persistent cough and shortness of breath.

Raja Michael Flores is an American thoracic surgeon and former candidate for mayor of New York City, currently Chief of the Division of Thoracic Surgery at Mount Sinai Hospital and Ames Professor of Cardiothoracic Surgery at the Icahn School of Medicine at Mount Sinai, both in New York City. On March 20, 2021, Dr. Flores announced his campaign for mayor of NYC.

Tumor-like disorders of the lung pleura are a group of conditions that on initial radiological studies might be confused with malignant lesions. Radiologists must be aware of these conditions in order to avoid misdiagnosing patients. Examples of such lesions are: pleural plaques, thoracic splenosis, catamenial pneumothorax, pleural pseudotumor, diffuse pleural thickening, diffuse pulmonary lymphangiomatosis and Erdheim–Chester disease.

<span class="mw-page-title-main">Arvind Kumar (surgeon)</span>

Arvind Kumar is an Indian surgeon and the Chairman, Institute of Chest Surgery, Chest Onco Surgery and Lung Transplantation at Medanta Hospital, Gurugram and Founder & Managing Trustee, Lung Care Foundation. He is Former Chairman, Center for Chest Surgery and Director, Institute of Robotic Surgery at Sir Ganga Ram Hospital (SGRH) New Delhi. He is Former Professor of Surgery & Head of Thoracic & Robotic Surgery Unit, All India Institute of Medical Sciences (AIIMS), New Delhi (1988-2012). He was President of the Association of Surgeons of India in 2019.

Hyperthermic intrathoracic chemotherapy (HITOC) is part of a surgical strategy employed in the treatment of various pleural malignancies. The pleura in this situation could be considered to include the surface linings of the chest wall, lungs, mediastinum, and diaphragm. HITOC is the chest counterpart of HIPEC. Traditionally used in the treatment of malignant mesothelioma, a primary malignancy of the pleura, this modality has recently been evaluated in the treatment of secondary pleural malignancies.

<span class="mw-page-title-main">Lung biopsy</span>

A lung biopsy is an interventional procedure performed to diagnose lung pathology by obtaining a small piece of lung which is examined under a microscope. Beyond microscopic examination for cellular morphology and architecture, special stains and cultures can be performed on the tissue obtained.

<span class="mw-page-title-main">Lung surgery</span>

Lung surgery is a type of thoracic surgery involving the repair or removal of lung tissue, and can be used to treat a variety of conditions ranging from lung cancer to pulmonary hypertension. Common operations include anatomic and nonanatomic resections, pleurodesis and lung transplants. Though records of lung surgery date back to the Classical Age, new techniques such as VATS continue to be developed.

References

  1. American College of Chest Physicians, et al. (Health and Science Policy Committee) (January 2003). "Diagnosis and management of lung cancer: ACCP evidence-based guidelines. American College of Chest Physicians". Chest. 123 (1 Suppl): D–G, 1S–337S. PMID   12527560.
  2. "What to Expect After Your Thoracic Surgery | Memorial Sloan Kettering Cancer Center". www.mskcc.org. Retrieved 2023-01-23.
  3. Hytych V, Horazdovsky P, Pohnan R, Pracharova S, Taskova A, Konopa Z, et al. (2015). "VATS lobectomy, history, indication, contraindication and general techniques". Bratislavske Lekarske Listy. 116 (7): 400–403. doi: 10.4149/bll_2015_076 . PMID   26286240.
  4. Mahtabifard A, DeArmond DT, Fuller CB, McKenna RJ (May 2007). "Video-assisted thoracoscopic surgery lobectomy for stage I lung cancer". Thoracic Surgery Clinics. 17 (2): 223–231. doi:10.1016/j.thorsurg.2007.03.019. PMID   17626400.
  5. Hanna JM, Berry MF, D'Amico TA (August 2013). "Contraindications of video-assisted thoracoscopic surgical lobectomy and determinants of conversion to open". Journal of Thoracic Disease. 5 (Suppl 3): S182–S189. doi:10.3978/j.issn.2072-1439.2013.07.08. PMC   3771618 . PMID   24040521.
  6. Vannucci F, Vieira A, Ugalde PA (2018-01-15). "The technique of VATS right pneumonectomy". Journal of Visualized Surgery. 4: 11. doi: 10.21037/jovs.2017.12.01 . PMC   5803127 . PMID   29445597.
  7. Cattaneo SM, Park BJ, Wilton AS, Seshan VE, Bains MS, Downey RJ, et al. (January 2008). "Use of video-assisted thoracic surgery for lobectomy in the elderly results in fewer complications". The Annals of Thoracic Surgery. 85 (1): 231–5, discussion 235–6. doi: 10.1016/j.athoracsur.2007.07.080 . PMID   18154816.
  8. Nicastri DG, Wisnivesky JP, Litle VR, Yun J, Chin C, Dembitzer FR, Swanson SJ (March 2008). "Thoracoscopic lobectomy: report on safety, discharge independence, pain, and chemotherapy tolerance". The Journal of Thoracic and Cardiovascular Surgery. 135 (3): 642–647. doi: 10.1016/j.jtcvs.2007.09.014 . PMID   18329487.
  9. Ng CS, Wan S, Hui CW, Wan IY, Lee TW, Underwood MJ, Yim AP (January 2007). "Video-assisted thoracic surgery lobectomy for lung cancer is associated with less immunochemokine disturbances than thoracotomy". European Journal of Cardio-Thoracic Surgery. 31 (1): 83–87. doi: 10.1016/j.ejcts.2006.10.019 . PMID   17118669.
  10. Casali G, Walker WS (March 2009). "Video-assisted thoracic surgery lobectomy: can we afford it?". European Journal of Cardio-Thoracic Surgery. 35 (3): 423–428. doi: 10.1016/j.ejcts.2008.11.008 . PMID   19136272.