Vacuum cooling

Last updated

Vacuum cooling is a rapid cooling technique for any porous product that has free water and uses the principle of evaporative cooling. Vacuum cooling is generally used for cooling food products that have a high water content and large porosities, due to its efficacy in losing water from both within and outside the products. (Lettuce is an example of vacuum cooled products.) This is the most widely used technique for rapid cooling of food products which has been proven to be one of the most efficient and economical methods of cooling and storage of vegetables, fruits, flowers, and more. [1] [2] [3]

Contents

This cooling technology not only largely improves the product quality, but also increases the shelf life of the product and, at the same time, it reduces the cooling costs compared to the conventional cooling methods available. [4]

Principle

The technology is based on the phenomenon that as the vapor pressure on a liquid reduces, its boiling point reduces. The boiling point of a liquid is defined as the temperature at which the vapor pressure of the liquid is equal to the external pressure. When the pressure put onto a liquid is reduced, the vapor pressure needed to induce boiling is also reduced, and therefore the boiling point of the liquid decreases. By reducing pressure, boiling water is possible at lower temperatures. This rapid evaporation of moisture from the surface and within the products due to the low surrounding pressure absorbs the necessary latent heat for phase change from the product itself. This latent heat required for evaporation is obtained mostly from the sensible heat of the product and as a consequence of this evaporation the temperature of the product falls and the product can be cooled down to its desired storage temperature. [2] [5]

Process

An airtight chamber is maintained by removing air from the inside of the chamber using a vacuum pump. The products to be cooled are kept in that airtight chamber. As the pressure is reduced the boiling point of water reduces and water starts to evaporate, taking heat from the product. As a consequence of this evaporation, the product temperature begins to decrease. This cooling process of the products continues until it reaches the desired product temperature. [3] [6] [7]

For maintaining a steady cooling process, it is necessary to evacuate the chamber continuously. [8] Other factors that determine the cooling process are the surface area of the product that is available for heat transfer as well as the product's sensitivity to losing water. [9]

Advantages

As the product is cooled uniformly throughout the body without any temperature gradient in the body, the shelf life of the product increases. [10] [11] [12] [13]

Cooling the product through vacuum cooling takes roughly a quarter of the energy of other traditional cooling methods. [1]

Disadvantage

Sometimes excess moisture loss during the cooling process will deteriorate the product's quality and therefore there is a limit to the cooling process. This problem is to be taken care of by maintaining the required pressure, temperature, and time of cooling. [12] [13]

Related Research Articles

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

<span class="mw-page-title-main">Evaporation</span> Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Liquid nitrogen</span> Liquid state of nitrogen

Liquid nitrogenLN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about −196 °C (−321 °F; 77 K). It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose viscosity is about one tenth that of acetone (i.e. roughly one thirtieth that of room temperature water). Liquid nitrogen is widely used as a coolant.

<span class="mw-page-title-main">Dilution refrigerator</span> Cryogenic device for cooling to very low temperatures

A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2 mK, with no moving parts in the low-temperature region. The cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

<span class="mw-page-title-main">Heat pipe</span> Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Vacuum distillation</span> Low-pressure and low-temperature distillation method

Vacuum distillation or distillation under reduced pressure is a type of distillation performed under reduced pressure, which allows the purification of compounds not readily distilled at ambient pressures or simply to save time or energy. This technique separates compounds based on differences in their boiling points. This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation.

<span class="mw-page-title-main">Rotary evaporator</span> Device used in chemical laboratories

A rotary evaporator (rotavap) is a device used in chemical laboratories for the efficient and gentle removal of solvents from samples by evaporation. When referenced in the chemistry research literature, description of the use of this technique and equipment may include the phrase "rotary evaporator", though use is often rather signaled by other language.

<span class="mw-page-title-main">Cryostat</span> Cooling device

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

<span class="mw-page-title-main">Drying</span> Removal of water or another solvent by evaporation from a solid, semi-solid or liquid

Drying is a mass transfer process consisting of the removal of water or another solvent by evaporation from a solid, semi-solid or liquid. This process is often used as a final production step before selling or packaging products. To be considered "dried", the final product must be solid, in the form of a continuous sheet, long pieces, particles or powder. A source of heat and an agent to remove the vapor produced by the process are often involved. In bioproducts like food, grains, and pharmaceuticals like vaccines, the solvent to be removed is almost invariably water. Desiccation may be synonymous with drying or considered an extreme form of drying.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Vacuum evaporation</span>

Vacuum evaporation is the process of causing the pressure in a liquid-filled container to be reduced below the vapor pressure of the liquid, causing the liquid to evaporate at a lower temperature than normal. Although the process can be applied to any type of liquid at any vapor pressure, it is generally used to describe the boiling of water by lowering the container's internal pressure below standard atmospheric pressure and causing the water to boil at room temperature.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Evaporator</span> Machine transforming a liquid into a gas

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapor. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment, causing it to boil at a lower temperature compared to normal atmospheric boiling.

<span class="mw-page-title-main">Evaporation (deposition)</span> Common method of thin-film deposition

Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film.

<span class="mw-page-title-main">Pumpable ice technology</span> Type of technology to produce and use fluids or secondary refrigerants

Pumpable icetechnology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

A climbing/falling film plate evaporator is a specialized type of evaporator in which a thin film of liquid is passed over a rising and falling plate to allow the evaporation process to occur. It is an extension of the falling film evaporator, and has application in any field where the liquid to be evaporated cannot withstand extended exposure to high temperatures, such as the concentration of fruit juices.

Vacuum drying is the mass transfer operation in which the moisture present in a substance, usually a wet solid, is removed by means of creating a vacuum.

References

  1. 1 2 "Vacuum keeps food fresh and cool from field to table". Physics World. 2019-08-14. Retrieved 2022-07-31.
  2. 1 2 "Principles of Vacuum Cooling | Precooling Solutions". agrimaint.com. Retrieved 2022-07-31.
  3. 1 2 "How Vacuum Coolers Work | Precooling Solutions". agrimaint.com. Retrieved 2022-07-31.
  4. lal Basediya, Amrat; Samuel, D. V. K.; Beera, Vimala (June 2013). "Evaporative cooling system for storage of fruits and vegetables - a review". Journal of Food Science and Technology. 50 (3): 429–442. doi:10.1007/s13197-011-0311-6. ISSN   0022-1155. PMC   3602570 . PMID   24425938.
  5. McDonald, Karl; Sun, Da-Wen (October 2000). "Vacuum cooling technology for the food processing industry: a review". Journal of Food Engineering. 45 (2): 55–65. doi:10.1016/S0260-8774(00)00041-8.
  6. Baas, Raoul Alderse (2019-01-08). "Vacuum cooling process". Webercooling. Retrieved 2022-07-31.
  7. "Cooling methods | Cooling and storage | Postharvest fundamentals". www.postharvest.net.au. Retrieved 2022-07-31.
  8. "Industrial Vacuum Cooling: A New Perspective For The Food Industry". BVT. 2019-11-13. Retrieved 2022-07-31.
  9. He, Su-Yan; Li, Yun-Fei (October 2003). "Theoretical simulation of vacuum cooling of spherical foods". Applied Thermal Engineering. 23 (12): 1489–1501. doi:10.1016/S1359-4311(03)00085-1.
  10. PhD, Lin Carson (2022-03-04). "Advantages of Vacuum Cooling". BAKERpedia. Retrieved 2022-07-31.
  11. "Benefits of Vacuum Cooling | Precooling Solutions". agrimaint.com. Retrieved 2022-07-31.
  12. 1 2 "Advantages and disadvantages of vacuum cooling system". Dongguan COLDMAX Ltd. Retrieved 2022-07-31.
  13. 1 2 "Advantages and Disadvantages of Vacuum Cooling - OTS test equipment". www.ots-testequipment.net. Retrieved 2022-07-31.