Vector magnetograph

Last updated

A vector magnetograph is a type of imaging telescope that can estimate the 3-D vector of the magnetic field on a distant body with a resolved line spectrum. Magnetographs are useful for studying the Sun because the surface magnetic field is important to the creation and maintenance of the solar corona, and gives rise to the phenomena of solar flares and space weather.

Vector magnetographs measure the longitudinal (line-of-sight) component of the magnetic field separately from the transverse (image-plane) components, using different aspects of the Zeeman splitting that affects the wavelength of emission and/or absorption spectral lines in the presence of a magnetic field. The Zeeman splitting is caused by the fact that individual atoms are magnetized due to the circulating motion of electrons bound to them. Emission or absorption of a photon changes the magnetic moment of the atom. In a magnetic field, photons emitted with different polarizations gain or lose energy depending on their orientation relative to the surrounding magnetic field, changing the characteristics of the spectral line—some polarization components are blue-shifted or red-shifted relative to the line's reference wavelength, by a factor proportional to the field intensity.

Specifically, the circular-polarized component of the light is shifted in wavelength proportional to the field strength in the direction of the observer, and the wavelength shift of the vertical and horizontal linearly-polarized components measures the field strength in those directions.

A vector magnetograph works in a very narrow waveband around a single spectral line, for example the 525.02 nm 'Fe I' line from neutral (non-ionized) iron. The measured shifts in wavelength are fractions of a picometre. Measuring the full spectral profile of the line with this precision requires a high-dispersion spectrograph and a long time to collect sufficient photons to make the measurement with precision. For example, SOLIS requires about an hour to gather polarized spectral profiles over the whole Sun, and Hinode, the recently launched spacecraft with a 0.5-meter solar telescope on board, takes about an hour to cover a 164-arcsecond-square field (1% of the Sun) at very high spatial resolution. Other types of magnetograph use narrowband filter imaging to produce a measurement of the first few moments of the spectral line, and operate much more quickly: the HMI instrument on board the Solar Dynamics Observatory will produce a vector magnetogram every few minutes.

The splitting effect is antisymmetric along the line-of-sight, but symmetric transverse to the line of sight, so the transverse component of the field can only be measured up to a factor of -1: there is a 180° ambiguity in vector magnetograph measurements of portion of the magnetic field that is perpendicular to the line of sight of the instrument.

Notable existing vector magnetographs include the IVM at the Mees Observatory in Hawaii, SVM at Udaipur Solar Observatory, India, the SOLIS instrument at the National Solar Observatory (strictly speaking, SOLIS is a scanned spectropolarimeter), and the narrowband filtergraph instrument on the Hinode spacecraft. Planned instruments include a vector polarimeter at the Advanced Technology Solar Telescope slated to be built in the 20-teens, and the HMI instrument aboard the Solar Dynamics Observatory, launched in February 2010.

Related Research Articles

Solar flare Sudden flash of increased brightness on the Sun

A solar flare is an intense eruption of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections and solar particle events.

Radio wave Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared radiation. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm ; at 30 Hz the corresponding wavelength is 10,000 km. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a close, but slightly lower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials under the influence of magnetic fields.

Michelson interferometer Common configuration for optical interferometry

The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

Ellipsometry Optical technique for characterizing thin films

Ellipsometry is an optical technique for investigating the dielectric properties of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it to a model.

Madison Symmetric Torus

The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.

The Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) is part of the Lockheed Martin Advanced Technology Center (ATC) that is known primarily for its scientific work in the field of solar physics, astronomy and space weather. The LMSAL team is part of Lockheed Martin Space Systems and has close affiliations with NASA and the solar physics group at Stanford University.

Richard B. Dunn Solar Telescope Optical telescope dedicated to observing the Sun

The Dunn Solar Telescope is a unique vertical-axis solar telescope, in Sunspot, New Mexico located at Sacramento Peak, New Mexico. It is the main telescope at the Sunspot Solar Observatory, operated by New Mexico State University in partnership with the National Solar Observatory through funding by the National Science Foundation, the state of New Mexico and private funds from other partners. The Dunn Solar Telescope specializes in high-resolution imaging and spectroscopy to help astrophysicists worldwide obtain a better understanding of how the Sun affects the Earth. Completed in 1969, it was upgraded with high-order adaptive optics in 2004 and remains a highly versatile astrophysical observatory which serves as an important test platform for developing new instrumentation and technologies.

A magnetograph is one of two types of scientific instrument:

Solar Dynamics Observatory NASA mission

The Solar Dynamics Observatory (SDO) is a NASA mission which has been observing the Sun since 2010. Launched on 11 February 2010, the observatory is part of the Living With a Star (LWS) program.

Magnetogram

The term magnetogram has two meanings, used separately in the contexts of magnetic fields of the Sun and the Earth.

Atomic line filter Optical band-pass filter used in the physical sciences

An atomic line filter (ALF) is a more effective optical band-pass filter used in the physical sciences for filtering electromagnetic radiation with precision, accuracy, and minimal signal strength loss. Atomic line filters work via the absorption or resonance lines of atomic vapors and so may also be designated an atomic resonance filter (ARF).

Hinode (satellite) Japanese satellite

Hinode, formerly Solar-B, is a Japan Aerospace Exploration Agency Solar mission with United States and United Kingdom collaboration. It is the follow-up to the Yohkoh (Solar-A) mission and it was launched on the final flight of the M-V rocket from Uchinoura Space Center, Japan on 22 September 2006 at 21:36 UTC. Initial orbit was perigee height 280 km, apogee height 686 km, inclination 98.3 degrees. Then the satellite maneuvered to the quasi-circular sun-synchronous orbit over the day/night terminator, which allows near-continuous observation of the Sun. On 28 October 2006, the probe's instruments captured their first images.

Zeeman–Doppler imaging

In astrophysics, Zeeman–Doppler imaging is a tomographic technique dedicated to the cartography of stellar magnetic fields, as well as surface brightness and temperature distributions.

The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun.

International X-ray Observatory

The International X-ray Observatory (IXO) is a cancelled X-ray telescope that was to be launched in 2021 as a joint effort by NASA, the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA). In May 2008, ESA and NASA established a coordination group involving all three agencies, with the intent of exploring a joint mission merging the ongoing XEUS and Constellation-X Observatory (Con-X) projects. This proposed the start of a joint study for IXO. NASA was forced to cancel the observatory due to budget constrains in fiscal year 2012. ESA however decided to reboot the mission on its own developing Advanced Telescope for High Energy Astrophysics as a part of Cosmic Vision program.

Cosmology Large Angular Scale Surveyor

The Cosmology Large Angular Scale Surveyor (CLASS) is an array of microwave telescopes at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. The CLASS experiment aims to improve our understanding of cosmic dawn when the first stars turned on, test the theory of cosmic inflation, and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB) over 65% of the sky at multiple frequencies in the microwave region of the electromagnetic spectrum.

IXPE NASA satellite of the Explorer program

Imaging X-ray Polarimetry Explorer, commonly known as IXPE or SMEX-14, is a space observatory with three identical telescopes designed to measure the polarization of cosmic X-rays of Explorer program. The observatory, which was launched 9 December 2021, is an international collaboration between NASA and the Italian Space Agency (ASI).

Synoptic Optical Long-term Investigations of the Sun (SOLIS) is a synoptic facility for solar observations over a long time frame that is funded by the National Science Foundation (NSF) and designed and built by the National Solar Observatory (NSO) . It is operated by the NSO Integrated Synoptic Program (NISP). SOLIS is a single set of three instruments mounted on a common observing platform. The instruments are a Vector Spectromagnetograph (VSM), an Integrated Sunlight Spectrometer (ISS), and a Full-Disk Patrol (FDP). The VSM provides full-disk vector maps of the solar magnetic field both in the photosphere and in the chromosphere on a daily basis, continuing the 40-year record of NSO magnetic field observations. The ISS obtains spectra of the Sun integrated over the solar disk, so the Sun appears as it would as a much more distant star. The combination of data from the ISS and the VSM is useful for studies of exoplanet systems as it allows the modeling of the influence of a star's magnetic field on its spectrum giving clues to the activity level that the exoplanets may be subject to. The FDP provides full-disk images of the Sun in a variety of spectral lines with a cadence as high as 10 seconds.

References

    "The Hinode Spectro-Polarimeter". Sol. Phys. 283: 579. Bibcode:2013SoPh..283..579L. doi: 10.1007/s11207-012-0206-3 .