Vegetation index

Last updated
6- monthly NDVI average for Australia, 1 Dec 2012 to 31 May 2013 NVDImapterrain2.png
6- monthly NDVI average for Australia, 1 Dec 2012 to 31 May 2013

A vegetation index (VI) is a spectral imaging transformation of two or more image bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations. [2] [3]

Contents

There are many VIs, with many being functionally equivalent. Many of the indices make use of the inverse relationship between red and near-infrared reflectance associated with healthy green vegetation. Since the 1960s scientists have used satellite remote sensing to monitor fluctuation in vegetation at the Earth's surface. Measurements of vegetation attributes include leaf area index (LAI), percent green cover, chlorophyll content, green biomass and absorbed photosynthetically active radiation (APAR).

VIs have been historically classified based on a range of attributes, including the number of spectral bands (2 or greater than 2); the method of calculations (ratio or orthogonal), depending on the required objective; or by their historical development (classified as first generation VIs or second generation VIs). [4] For the sake of comparison of the effectiveness of different VIs, Lyon, Yuan et al. (1998) [5] classified 7 VIs based on their computation methods (Subtraction, Division or Rational Transform). Due to advances in hyperspectral remote sensing technology, high-resolution reflectance spectrums are now available, which can be used with traditional multispectral VIs. In addition, VIs have been developed to be used specifically with hyperspectral data, such as the use of Narrow Band Vegetation Indices.

Uses

Vegetation indices have been used to:

Types of vegetation index

Multispectral Vegetation Index

NDVI through Landsat 8 applied to the urban area of Ponta Grossa, southern Brazil NDVI 2017-09-10.png
NDVI through Landsat 8 applied to the urban area of Ponta Grossa, southern Brazil

Hyperspectral Vegetation Index

With the advent of hyperspectral data, vegetation index have been developed specifically for hyperspectral data.

Advanced Vegetation Indices

With the emergence of machine learning, certain algorithms can be used to determine vegetation indices from data. This allows to take into account all spectral bands and to discover hidden parameters that can be useful to strengthen these vegetation indices. Thus, they can be more robust against light variations, shadows or even uncalibrated images if these artifacts exist in the training data.

See also

References

  1. Data downloaded from "Australian Bureau of Meteorology". on 13 June 2018, mapped in R 14 June 2018
  2. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P; Gao, X.; Ferreira, L.G (2002). "Overview of the radiometric and biophysical performance of the MODIS vegetation indices". Remote Sensing of Environment. 83 (1–2): 195–213. Bibcode:2002RSEnv..83..195H. doi:10.1016/S0034-4257(02)00096-2.
  3. Carlos, Pérez Gutiérrez; Muñoz Nieto, Ángel Luis. Teledeteccion: Nociones y Aplicaciones (in Spanish). Spain. p. 144. ISBN   978-84-611-1613-3 . Retrieved October 17, 2024.
  4. Bannari, A.; Morin, D.; Bonn, F.; Huete, A. R. (1995-08-01). "A review of vegetation indices". Remote Sensing Reviews. 13 (1–2): 95–120. doi:10.1080/02757259509532298. ISSN   0275-7257.
  5. Lyon, John G (1998). "A change detection experiment using vegetation indices". Photogrammetric Engineering and Remote Sensing: 143–150. CiteSeerX   10.1.1.462.2056 .
  6. Eklundh, L.; Olsson, L. (2003). "Vegetation index trends for the African Sahel 1982-1999". Geophysical Research Letters. 30 (8): 1430. Bibcode:2003GeoRL..30.1430E. doi: 10.1029/2002GL016772 . ISSN   0094-8276. S2CID   129096989.
  7. Gillies, R. R.; Kustas, W. P.; Humes, K. S. (1997). "A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e". International Journal of Remote Sensing. 18 (15): 3145–3166. Bibcode:1997IJRS...18.3145G. doi:10.1080/014311697217026. ISSN   0143-1161.
  8. Sandholt, Inge; Rasmussen, Kjeld; Andersen, Jens (2002). "A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status". Remote Sensing of Environment. 79 (2–3): 213–224. Bibcode:2002RSEnv..79..213S. doi:10.1016/S0034-4257(01)00274-7. ISSN   0034-4257.
  9. Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vliia, A.; Hayes, M.; Svoboda, M.D. (2002). "Drought Monitoring with NDVI-Based Standardized Vegetation Index" (PDF). Photogrammetric Engineering & Remote Sensing. 68 (1): 71–75. Retrieved 16 May 2018.
  10. Kogan, F.N. (1995). "Application of vegetation index and brightness temperature for drought detection". Advances in Space Research. 15 (11): 91–100. Bibcode:1995AdSpR..15k..91K. doi:10.1016/0273-1177(95)00079-T. ISSN   0273-1177.
  11. Wan, Z.; Wang, P.; Li, X. (2004). "Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA". International Journal of Remote Sensing. 25 (1): 61–72. Bibcode:2004IJRS...25...61W. doi:10.1080/0143116031000115328. ISSN   0143-1161. S2CID   129234540.
  12. Jones, H. G. (2004). "Irrigation scheduling: advantages and pitfalls of plant-based methods". Journal of Experimental Botany. 55 (407): 2427–2436. doi: 10.1093/jxb/erh213 . ISSN   1460-2431. PMID   15286143.
  13. Pinter, Jr., Paul J.; Hatfield, Jerry L.; Schepers, James S.; Barnes, Edward M.; Moran, M. Susan; Daughtry, Craig S.T.; Upchurch, Dan R. (2003). "Remote Sensing for Crop Management". Photogrammetric Engineering & Remote Sensing. 69 (6): 647–664. doi: 10.14358/PERS.69.6.647 . ISSN   0099-1112.
  14. Kustas, W. P.; Norman, J. M. (2009). "Use of remote sensing for evapotranspiration monitoring over land surfaces". Hydrological Sciences Journal. 41 (4): 495–516. doi:10.1080/02626669609491522. ISSN   0262-6667.
  15. Pettorelli, Nathalie; Ryan, Sadie; Mueller, Thomas; Bunnefeld, Nils; Jędrzejewska, Bogumiła; Lima, Mauricio; Kausrud, Kyrre (2011). "The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology" (PDF). Climate Research. 46 (1): 15–27. Bibcode:2011ClRes..46...15P. doi: 10.3354/cr00936 . ISSN   0936-577X. JSTOR   24872307.
  16. Lloyd, Daniel (1990). "A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery". International Journal of Remote Sensing. 11 (12): 2269–2279. Bibcode:1990IJRS...11.2269L. doi:10.1080/01431169008955174. ISSN   0143-1161.
  17. Mahlein, A. K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. (January 2013). "Development of spectral indices for detecting and identifying plant diseases" . Remote Sensing of Environment. 128: 21–30. Bibcode:2013RSEnv.128...21M. doi:10.1016/j.rse.2012.09.019.
  18. Jordan, Carl F. (July 1969). "Derivation of Leaf-Area Index from Quality of Light on the Forest Floor" . Ecology. 50 (4): 663–666. Bibcode:1969Ecol...50..663J. doi:10.2307/1936256. ISSN   0012-9658. JSTOR   1936256.
  19. Bhandari, A.K.; Kumar, A.; Singh, G.K. (2012). "Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City". Procedia Technology. 6: 612–621. doi: 10.1016/j.protcy.2012.10.074 . ISSN   2212-0173.
  20. Vrieling, Anton; de Leeuw, Jan; Said, Mohammed (2013-02-22). "Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series". Remote Sensing. 5 (2): 982–1000. Bibcode:2013RemS....5..982V. doi: 10.3390/rs5020982 . ISSN   2072-4292.
  21. Siwe, Rene Ngamabou; Koch, Barbara (2008-01-12). "Change vector analysis to categorise land cover change processes using the tasselled cap as biophysical indicator" . Environmental Monitoring and Assessment. 145 (1–3): 227–235. Bibcode:2008EMnAs.145..227S. doi:10.1007/s10661-007-0031-6. ISSN   0167-6369. PMID   18193332. S2CID   189913689.
  22. Yousuf, Reem; AL-Khakani, Ebtihal (2021). "Assessing Degree of Desertification Using Tasselled Cap Transformation and Spectral Indicators Techniques: Iraq". Basic and Applied Sciences - Scientific Journal of King Faisal University. doi: 10.37575/b/sci/0019 . ISSN   1658-0311.
  23. Kauth R. J. & G. S. Thomas (1976): The tasseled Cap - A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data
  24. Rock, B. N.; Vogelmann, J. E.; Williams, D. L.; Vogelmann, A. F.; Hoshizaki, T. (July 1986). "Remote Detection of Forest Damage" . BioScience. 36 (7): 439–445. doi:10.2307/1310339. ISSN   1525-3244. JSTOR   1310339.
  25. LWCI entry in the Index Database, https://www.indexdatabase.de/db/i-single.php?id=129
  26. Huete, A.R (August 1988). "A soil-adjusted vegetation index (SAVI)" . Remote Sensing of Environment. 25 (3): 295–309. Bibcode:1988RSEnv..25..295H. doi:10.1016/0034-4257(88)90106-X.
  27. Joshi, R.C.; Ryu, D.; Sheridan, G.J.; Lane, P.N.J. (2021). "Modeling Vegetation Water Stress over the Forest from Space: Temperature Vegetation Water Stress Index (TVWSI)". Remote Sens. 13 (22:4635): 4635. Bibcode:2021RemS...13.4635J. doi: 10.3390/rs13224635 .
  28. Puente, Cesar; Olague, Gustavo; Trabucchi, Mattia; Arjona-Villicaña, P. David; Soubervielle-Montalvo, Carlos (January 2019). "Synthesis of Vegetation Indices Using Genetic Programming for Soil Erosion Estimation". Remote Sensing. 11 (2): 156. Bibcode:2019RemS...11..156P. doi: 10.3390/rs11020156 . ISSN   2072-4292.
  29. Albarracín, Juan F. H.; Oliveira, Rafael S.; Hirota, Marina; dos Santos, Jefersson A.; Torres, Ricardo da S. (January 2020). "A Soft Computing Approach for Selecting and Combining Spectral Bands". Remote Sensing. 12 (14): 2267. arXiv: 2011.05127 . Bibcode:2020RemS...12.2267A. doi: 10.3390/rs12142267 . ISSN   2072-4292.
  30. Vayssade, Jehan-Antoine; Paoli, Jean-Noël; Gée, Christelle; Jones, Gawain (January 2021). "DeepIndices: Remote Sensing Indices Based on Approximation of Functions through Deep-Learning, Application to Uncalibrated Vegetation Images". Remote Sensing. 13 (12): 2261. Bibcode:2021RemS...13.2261V. doi: 10.3390/rs13122261 . ISSN   2072-4292.