Vented balance safety enclosure

Last updated
A ventilated balance enclosure Powder-handling enclosure 2.png
A ventilated balance enclosure

Vented balance safety enclosures are used in pharmaceutical, chemical, biological, and toxicological laboratories to provide maximum containment for weighing operations in weighing scales.

Fume hoods, also known as laboratory chemical hoods, are one of the most important and widely used engineering controls to protect workers in laboratories. Fume hoods were introduced about 100 years ago to safeguard personnel working with hazardous materials. While many changes and improvements have been made, the basic concept and design of fume hoods remains the same. Air is drawn from the workplace, around the worker and into the front of the hood, and is then exhausted out of the laboratory. Most laboratory hoods are described as constant air volume (CAV) hoods because they draw a constant amount of air at all times. Rising energy costs have made these hoods exceptionally expensive to operate. For example, a single six-foot hood operating 24/7/365 costs over $5,000/year to operate. [1] [2] In addition, CAV hoods do not react rapidly to airflow disturbances (turbulence) within the hood or within the laboratory and, hence, their sole purpose of containment and protection can be seriously compromised.

To optimize the effectiveness of properly designed hoods: [3]

The control of hazards is more than simply enclosing the problem. What are important are how well the ventilated areas contain the hazards and suitability of the workstations for the specific tasks being performed.

Related Research Articles

Biological hazard Biological material that poses serious risks to the health of living organisms

A biological hazard, or biohazard, is a biological substance that poses a threat to the health of living organisms, primarily humans. This could include a sample of a microorganism, virus or toxin that can adversely affect human health. A biohazard could also be a substance harmful to other animals.

Fume hood Type of local ventilation device

A fume hood is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.

Ventilation (architecture) Intentional introduction of outside air into a space

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of indoor environment, or other objectives.

Occupational hygiene Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation of protection from hazards at work that may result in injury, illness, or affect the well being of workers. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

Chemical hazard Non-biological substance that has the potential to cause harm to life or health

A chemical hazard is a (non-biological) substance that has the potential to cause harm to life or health. Chemicals are widely used in the home and in many other places. Exposure to chemicals can cause acute or long-term detrimental health effects. There are many types of hazardous chemicals, including neurotoxins, immune agents, dermatologic agents, carcinogens, reproductive toxins, systemic toxins, asthmagens, pneumoconiotic agents, and sensitizers. In the workplace, exposure to chemical hazards is a type of occupational hazard. The use of protective personal equipment(PPE) may substantially reduce the risk of damage from contact with hazardous materials.

Process safety management

Process safety managementsystem is a regulation promulgated by the U.S. Occupational Safety and Health Administration (OSHA). A process is any activity or combination of activities including any use, storage, manufacturing, handling or the on-site movement of highly hazardous chemicals (HHCs) as defined by OSHA and the Environmental Protection Agency.

Electrical equipment in hazardous areas Electrical equipment in places where fire or explosion hazards may exist

In electrical and safety engineering, hazardous locations are places where fire or explosion hazards may exist. Sources of such hazards include gases, vapors, dust, fibers, and flyings, which are combustible or flammable. Electrical equipment installed in such locations could provide an ignition source, due to electrical arcing, or high temperature. Standards and regulations exist to identify such locations, classify the hazards, and design equipment for safe use in such locations.

A wet lab, or experimental lab, is a type of laboratory where it is necessary to handle various types of chemicals and potential "wet" hazards, so the room has to be carefully designed, constructed, and controlled to avoid spillage and contamination.

Biosafety cabinet

A biosafety cabinet (BSC)—also called a biological safety cabinet or microbiological safety cabinet—is an enclosed, ventilated laboratory workspace for safely working with materials contaminated with pathogens requiring a defined biosafety level. Several different types of BSC exist, differentiated by the degree of biocontainment they provide. BSCs first became commercially available in 1950.

The safe handling of carcinogens is the handling of cancer causing substances in a safe and responsible manner. Carcinogens are defined as 'a substance or agent that can cause cells to become cancerous by altering their genetic structure so that they multiply continuously and become malignant'. The Australian NOHSC Definitions divides carcinogens into three categories. Category 1 carcinogens are substances known to be carcinogenic to humans. Category 2 carcinogens are substances that should be regarded as if they were carcinogenic to humans. Category 3 carcinogens are defined as substances that have possible carcinogenic effects in humans but about which there is insufficient information to make an assessment. Substances are most often categorised as category 1 carcinogens by epidemiological data and as category 2 or 3 carcinogens through the results of animal testing. Mixtures containing more than 0.1% of a category 1 or 2 carcinogen or more than 1% of a category 3 carcinogen must also be considered carcinogenic and be appropriately labelled. Many carcinogens are used in industry and everyday life, making the safe handling of carcinogens an important consideration.

Hierarchy of hazard controls System used in industry to eliminate or minimize exposure to hazards

Hierarchy of hazard control is a system used in industry to minimize or eliminate exposure to hazards. It is a widely accepted system promoted by numerous safety organizations. This concept is taught to managers in industry, to be promoted as standard practice in the workplace. It has also been used to inform public policy, in fields such as road safety. Various illustrations are used to depict this system, most commonly a triangle.

Eco funnel

The ECO Funnel, also known as the "Safety Ecological Funnel", is a funnel intended to be affixed to a receptacle for liquid chemical waste. It is designed to reduce environmental contamination, in compliance with OSHA and EPA mandated safety protocols.

Integral Molten Salt Reactor

The Integral Molten Salt Reactor (IMSR) is designed for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

Chemical storage

Chemical storage is the storage of controlled substances or hazardous materials in chemical stores, chemical storage cabinets, or similar devices.

Emergency eyewash and safety shower station

An emergency eyewash and safety shower station are essential equipment for every laboratory that uses chemicals and hazardous substances. Emergency eyewash and safety shower stations serve the purpose of reducing workplace injury and keeping workers away from various dangers.

Jerry Koenigsberg is one of the founders of the international Green Laboratory Design Movement. He retired in 2001 from G.P.R. Planners, an American laboratory planning and design firm which he and his two partners sold to Jacobs Engineering Corporation in 1998.

Engineering controls are strategies designed to protect workers from hazardous conditions by placing a barrier between the worker and the hazard or by removing a hazardous substance through air ventilation. Engineering controls involve a physical change to the workplace itself, rather than relying on workers' behavior or requiring workers to wear protective clothing.

Chemicals as elements, compounds, mixtures, solutions and emulsions are very widely used and transported in the modern industrial society. Of necessity, they are also used in schools, Universities and other training facilities to educate pupils in their safe use and handling and also are commonly used in domestic situations for cleaning, garden maintenance and DIY.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

Engineering controls for nanomaterials

Engineering controls for nanomaterials are a set of hazard control methods and equipment for workers who interact with nanomaterials. Engineering controls are physical changes to the workplace that isolate workers from hazards, and are considered the most important set of methods for controlling the health and safety hazards of nanomaterials after systems and facilities have been designed.

References

  1. T. Smith, S. Crooks. "Implementing a laboratory ventilation management program," Chemical Health and Safety, Vol. 3, No. 2, (1996) pp. 12–16.
  2. Laboratory control and safety solutions applications guide. Siemens Building Technologies, Inc., Landis Div., Buffalo Park, IL (1999).
  3. A. Kolesnikov, R. Ryan, and D. B. Walters. "Use of CFD to design containment systems for work with hazardous materials," Chemical Health and Safety, Vol.10, No. 2(2003) pp. 17–20.
  4. 1 2 American National Standards Institute (ANSI). "American National Standard Ventilation Standard," ANSI/AIHA Z9.5-2003, American Industrial Hygiene Association, Fairfax VA.
  5. US DOL OSHA Standard for Occupational Exposure to Toxic Substances in the Laboratory (The Laboratory Standard). 29 CFR 1910.1450.
  6. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). "Methods of Testing Performance of Laboratory Fume Hoods." Standard 110 (1995), Atlanta GA.