Vertex cycle cover

Last updated

In mathematics, a vertex cycle cover (commonly called simply cycle cover) of a graph G is a set of cycles which are subgraphs of G and contain all vertices of G.

Contents

If the cycles of the cover have no vertices in common, the cover is called vertex-disjoint or sometimes simply disjoint cycle cover. This is sometimes known as exact vertex cycle cover. In this case the set of the cycles constitutes a spanning subgraph of G. A disjoint cycle cover of an undirected graph (if it exists) can be found in polynomial time by transforming the problem into a problem of finding a perfect matching in a larger graph. [1] [2]

If the cycles of the cover have no edges in common, the cover is called edge-disjoint or simply disjoint cycle cover.

Similar definitions exist for digraphs, in terms of directed cycles. Finding a vertex-disjoint cycle cover of a directed graph can also be performed in polynomial time by a similar reduction to perfect matching. [3] However, adding the condition that each cycle should have length at least 3 makes the problem NP-hard. [4]

Properties and applications

Permanent

The permanent of a (0,1)-matrix is equal to the number of vertex-disjoint cycle covers of a directed graph with this adjacency matrix. This fact is used in a simplified proof showing that computing the permanent is #P-complete. [5]

Minimal disjoint cycle covers

The problems of finding a vertex disjoint and edge disjoint cycle covers with minimal number of cycles are NP-complete. The problems are not in complexity class APX. The variants for digraphs are not in APX either. [6]

See also

Related Research Articles

The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph, G, contains a Hamiltonian path, a path that visits every vertex in the graph exactly once. The problem may specify the start and end of the path, in which case the starting vertex s and ending vertex t must be identified.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Clique problem</span> Task of computing complete subgraphs

In computer science, the clique problem is the computational problem of finding cliques in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique, finding a maximum weight clique in a weighted graph, listing all maximal cliques, and solving the decision problem of testing whether a graph contains a clique larger than a given size.

<span class="mw-page-title-main">Spanning tree</span> Tree which includes all vertices of a graph

In the mathematical field of graph theory, a spanning treeT of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree. If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T.

<span class="mw-page-title-main">Independent set (graph theory)</span> Unrelated vertices in graphs

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.

<span class="mw-page-title-main">Vertex cover</span> Subset of a graphs vertices, including at least one endpoint of every edge

In graph theory, a vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.

In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

<span class="mw-page-title-main">Dominating set</span> Subset of a graphs nodes such that all other nodes link to at least one

In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

In the mathematical discipline of graph theory, a feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a graph without cycles. Equivalently, each FVS contains at least one vertex of any cycle in the graph. The feedback vertex set number of a graph is the size of a smallest feedback vertex set. The minimum feedback vertex set problem is an NP-complete problem; it was among the first problems shown to be NP-complete. It has wide applications in operating systems, database systems, and VLSI chip design.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an acyclic subgraph of the given graph, often called a directed acyclic graph. A feedback arc set with the fewest possible edges is a minimum feedback arc set and its removal leaves a maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

<span class="mw-page-title-main">Signed graph</span> Graph with sign-labeled edges

In the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign.

In computational complexity theory, a gadget is a subunit of a problem instance that simulates the behavior of one of the fundamental units of a different computational problem. Gadgets are typically used to construct reductions from one computational problem to another, as part of proofs of NP-completeness or other types of computational hardness. The component design technique is a method for constructing reductions by using gadgets.

<span class="mw-page-title-main">Claw-free graph</span> Graph without four-vertex star subgraphs

In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.

In graph theory, a clique cover or partition into cliques of a given undirected graph is a collection of cliques that cover the whole graph. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph.

<span class="mw-page-title-main">3-dimensional matching</span>

In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices.

In network theory, the Wiener connector is a means of maximizing efficiency in connecting specified "query vertices" in a network. Given a connected, undirected graph and a set of query vertices in a graph, the minimum Wiener connector is an induced subgraph that connects the query vertices and minimizes the sum of shortest path distances among all pairs of vertices in the subgraph. In combinatorial optimization, the minimum Wiener connector problem is the problem of finding the minimum Wiener connector. It can be thought of as a version of the classic Steiner tree problem, where instead of minimizing the size of the tree, the objective is to minimize the distances in the subgraph.

<span class="mw-page-title-main">Matroid parity problem</span> Largest independent set of paired elements

In combinatorial optimization, the matroid parity problem is a problem of finding the largest independent set of paired elements in a matroid. The problem was formulated by Lawler (1976) as a common generalization of graph matching and matroid intersection. It is also known as polymatroid matching, or the matchoid problem.

References

  1. David Eppstein. "Partition a graph into node-disjoint cycles".
  2. Tutte, W. T. (1954), "A short proof of the factor theorem for finite graphs" (PDF), Canadian Journal of Mathematics , 6: 347–352, doi:10.4153/CJM-1954-033-3, MR   0063008, S2CID   123221074 .
  3. https://www.cs.cmu.edu/~avrim/451f13/recitation/rec1016.txt (problem 1)
  4. Garey and Johnson, Computers and intractability, GT13
  5. Ben-Dor, Amir and Halevi, Shai. (1993). "Zero-one permanent is #P-complete, a simpler proof". Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems, 108-117.
  6. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (1999) ISBN   3-540-65431-3 p.378, 379, citing Sahni, Sartaj; Gonzalez, Teofilo (1976), "P-complete approximation problems" (PDF), Journal of the ACM , 23 (3): 555–565, doi:10.1145/321958.321975, MR   0408313, S2CID   207548581 .