This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic.(November 2012) |
Viability theory is an area of mathematics that studies the evolution of dynamical systems under constraints on the system state. [1] [2] It was developed to formalize problems arising in the study of various natural and social phenomena, and has close ties to the theories of optimal control and set-valued analysis.
Many systems, organizations, and networks arising in biology and the social sciences do not evolve in a deterministic way, nor even in a stochastic way. Rather they evolve with a Darwinian flavor, driven by random fluctuations but yet constrained to remain "viable" by their environment. Viability theory started in 1976 by translating mathematically the title of the book Chance and Necessity [3] by Jacques Monod to the differential inclusion for chance and for necessity. The differential inclusion is a type of “evolutionary engine” (called an evolutionary system associating with any initial state x a subset of evolutions starting at x. The system is said to be deterministic if this set is made of one and only one evolution and contingent otherwise. Necessity is the requirement that at each instant, the evolution is viable (remains) in the environment K described by viability constraints, a word encompassing polysemous concepts as stability, confinement, homeostasis, adaptation, etc., expressing the idea that some variables must obey some constraints (representing physical, social, biological and economic constraints, etc.) that can never be violated. So, viability theory starts as the confrontation of evolutionary systems governing evolutions and viability constraints that such evolutions must obey. They share common features:
Viability theory thus designs and develops mathematical and algorithmic methods for investigating the "adaptation to viability constraints" of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It needed to forge a differential calculus of set-valued maps (set-valued analysis), differential inclusions and differential calculus in metric spaces (mutational analysis).
The basic problem of viability theory is to find the "viability kernel" of an environment, the subset of initial states in the environment such that there exists at least one evolution "viable" in the environment, in the sense that at each time, the state of the evolution remains confined to the environment. The second question is then to provide the regulation map selecting such viable evolutions starting from the viability kernel. The viability kernel may be equal to the environment, in which case the environment is called viable under the evolutionary system, and the empty set, in which case it is called a repellor, because all evolutions eventually violate the constraints.
The viability kernel assumes that some kind of "decision maker" controls or regulates evolutions of the system. If not, the next problem looks at the "tychastic kernel" (from tyche, meaning chance in Greek) or "invariance kernel", the subset of initial states in the environment such that all evolutions are "viable" in the environment, an alternative way to stochastic differential equations encapsulating the concept of "insurance" against uncertainty, providing a way of eradicating it instead of evaluating it.
A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences and engineering disciplines, as well as in non-physical systems such as the social sciences. The use of mathematical models to solve problems in business or military operations is a large part of the field of operations research. Mathematical models are also used in music, linguistics, and philosophy.
Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Indeterminism is the idea that events are not caused, or do not cause deterministically.
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty. A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both optimizes some criteria chosen by the decision maker, and appropriately accounts for the uncertainty of the problem parameters. Because many real-world decisions involve uncertainty, stochastic programming has found applications in a broad range of areas ranging from finance to transportation to energy optimization.
Jacques Lucien Monod was a French biochemist who won the Nobel Prize in Physiology or Medicine in 1965, sharing it with François Jacob and André Lwoff "for their discoveries concerning genetic control of enzyme and virus synthesis".
Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function .
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged.
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems. When the time variable runs over a set that is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a Cantor set, one gets dynamic equations on time scales. Some situations may also be modeled by mixed operators, such as differential-difference equations.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock prices or physical systems subject to thermal fluctuations. Typically, SDEs contain a variable which represents random white noise calculated as the derivative of Brownian motion or the Wiener process. However, other types of random behaviour are possible, such as jump processes. Random differential equations are conjugate to stochastic differential equations.
In mathematics, the notion of the continuity of functions is not immediately extensible to set-valued functions between two sets A and B. The dual concepts of upper hemicontinuity and lower hemicontinuity facilitate such an extension. A set-valued function that has both properties is said to be continuous in an analogy to the property of the same name for functions.
Projected dynamical systems is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation
Diederich Hinrichsen is a German mathematician who, together with Hans W. Knobloch, established the field of dynamical systems theory and control theory in Germany.
A set-valued function is a mathematical function that maps elements from one set, known as the domain, to sets of elements in another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory.
In mathematics, differential inclusions are a generalization of the concept of ordinary differential equation of the form
In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following:
Mark Herbert Ainsworth Davis (1945–2020) was Professor of Mathematics at Imperial College London. He made fundamental contributions to the theory of stochastic processes, stochastic control and mathematical finance.
Viable system theory (VST) concerns cybernetic processes in relation to the development/evolution of dynamical systems. They are considered to be living systems in the sense that they are complex and adaptive, can learn, and are capable of maintaining an autonomous existence, at least within the confines of their constraints. These attributes involve the maintenance of internal stability through adaptation to changing environments. One can distinguish between two strands such theory: formal systems and principally non-formal system. Formal viable system theory is normally referred to as viability theory, and provides a mathematical approach to explore the dynamics of complex systems set within the context of control theory. In contrast, principally non-formal viable system theory is concerned with descriptive approaches to the study of viability through the processes of control and communication, though these theories may have mathematical descriptions associated with them.
In mathematics, unscented optimal control combines the notion of the unscented transform with deterministic optimal control to address a class of uncertain optimal control problems. It is a specific application of Riemmann-Stieltjes optimal control theory, a concept introduced by Ross and his coworkers.
Fuzzy differential inclusion is tha culmination of Fuzzy concept and Differential inclusion introduced by Lotfi A. Zadeh which became popular.,,