Viable system model

Last updated

The viable system model (VSM) is a model of the organizational structure of any autonomous system capable of producing itself. It is an implementation of viable system theory. At the biological level, this model is correspondent to autopoiesis.

Contents

A viable system is any system organised in such a way as to meet the demands of surviving in the changing environment. One of the prime features of systems that survive is that they are adaptable. The VSM expresses a model for a viable system, which is an abstracted cybernetic (regulation theory) description that is claimed to be applicable to any organisation that is a viable system and capable of autonomy.

Overview

The model was developed by operations research theorist and cybernetician Stafford Beer in his book Brain of the Firm (1972). [1] Together with Beer's earlier works on cybernetics applied to management, this book effectively founded management cybernetics.

The first thing to note about the cybernetic theory of organizations encapsulated in the VSM is that viable systems are recursive; viable systems contain viable systems that can be modeled using an identical cybernetic description as the higher (and lower) level systems in the containment hierarchy (Beer expresses this property of viable systems as cybernetic isomorphism). A development of this model has originated the theoretical proposal called viable systems approach.

An exemplary model of a corporation as a viable system. Assumption: There is one System 1 purchasing external resources and one System 1 which produces the value, delivered to the customers. The VSM applies for all kinds of organizations. VSM Default Version English with two operational systems.png
An exemplary model of a corporation as a viable system. Assumption: There is one System 1 purchasing external resources and one System 1 which produces the value, delivered to the customers. The VSM applies for all kinds of organizations.

Components

Here we give a brief introduction to the cybernetic description of the organization encapsulated in a single level of the VSM. [2]

A viable system is composed of five interacting subsystems which may be mapped onto aspects of organizational structure. In broad terms Systems 1–3. [3] are concerned with the 'here and now' of the organization's operations, System 4 is concerned with the 'there and then' – strategical responses to the effects of external, environmental and future demands on the organization. [4] System 5 is concerned with balancing the 'here and now' and the 'there and then' to give policy directives which maintain the organization as a viable entity. [5]

In addition to the subsystems that make up the first level of recursion, the environment is represented in the model. The presence of the environment in the model is necessary as the domain of action of the system and without it there is no way in the model to contextualize or ground the internal interactions of the organization.

Algedonic alerts (from the Greek αλγος, pain and ηδος, pleasure) are alarms and rewards that escalate through the levels of recursion when actual performance fails or exceeds capability, typically after a timeout.

The model is derived from the architecture of the brain and nervous system. Systems 3-2-1 are identified with the ancient brain or autonomic nervous system. System 4 embodies cognition and conversation. System 5, the higher brain functions, include introspection and decision making. [6]

Rules for the viable system

In "Heart of Enterprise" [7] a companion volume to "Brain...", Beer applies Ashby's concept of (Requisite) Variety: the number of possible states of a system or of an element of the system. There are two aphorisms that permit observers to calculate Variety; four Principles of Organization; the Recursive System Theorem; three Axioms of Management and a Law of Cohesion. These rules ensure the Requisite Variety condition is satisfied, in effect that resources are matched to requirement.

Regulatory aphorisms

These aphorisms are: [8] [9]

Principles of organization

(Principles are 'primary sources of particular outcome')

These principles are:

Recursive system theorem

This theorem states:

[10]

Axioms

(Axioms are statements 'worthy of belief')

These axioms are:

The law of cohesion for multiple recursions of the viable system

This law ('something invariant in nature') states:

Measuring performance

Three measures of capacity producing three measures of achievement Performance.png
Three measures of capacity producing three measures of achievement

In Brain of the Firm (p. 163) Beer describes a triple vector to characterize activity in a System 1. The components are:

Beer adds "It would help a lot to fix these definitions clearly in the mind." System 4's job is essentially to realize potential. He then defines

Consider the management of a process with cash earnings or savings for a company or government:

Potentially £100,000 but aiming to make £ 60,000. Actually sales, savings or taxes of £40,000 are realized.
So Potentiality = £100,000; Capability = £60,000; Actuality = £40,000.
Thus latency = 60/100 = 0.6; Productivity = 40/60 = 0.67; And performance = 0.6 × 0.67 = 0.4 (or actuality/potential 40/100).

These methods (also known as normalisations) can be similarly applied in general e.g. to hours worked in the performance of tasks or products in a production process of some kind.

When actuality deviates from capability, because someone did something well or something badly, an algedonic alert is sent to management. If corrective action, adoption of a good technique or correction of an error, is not taken in a timely manner the alert is escalated. Because the criteria are applied in an ordered hierarchy the management itself need not be, but the routine response functions must be ordered to reflect best known heuristic practice. These heuristics are constantly monitored for improvement by the organization's System 4s.

Pay structures reflect these constraints on performance when capability or potential is realized with, for example, productivity bonuses, stakeholder agreements and intellectual property rights.

Metalanguage

Resolving undecidability by raising the metalanguage Beer Metalnaguage.PNG
Resolving undecidability by raising the metalanguage

In ascending the recursions of the viable system the context of each autonomous 5-4-3-2 metasystem enlarges and acquires more variety.

This defines a metalanguage stack of increasing capability to resolve undecidability in the autonomous lower levels. If someone near process level needs to innovate to achieve potential, or restore capability, help can be secured from management of higher variety.

An algedonic alert, sent when actuality deviates by some statistically significant amount from capability, makes this process automatic.

The notion of adding more variety or states to resolve ambiguity or undecidability (also known as the decision problem) is the subject of Chaitin's metamathematical conjecture algorithmic information theory and provides a potentially rigorous theoretical basis for a general management heuristic. If a process is not producing the agreed product more information, if applicable, will correct this, resolve ambiguity, conflict or undecidability.

In "Platform for Change" (Beer 1975) the thesis is developed via a collection of papers to learned bodies, including UK Police and Hospitals, to produce a visualization of the "Total System". Here a "Relevant ethic" evolves from "Experimental ethics" and the "Ethic with a busted gut" to produce a sustainable earth with reformed "old institutions" becoming "new institutions" driven by approval (eudemonic [13] criteria "Questions of Metric" in Platform... pp 163– 179) from the "software milieu" while culture adopts the systems approach and "Homo faber" (man the maker) becomes "Homo Gubernator" (self-steering). [14]

Applying VSM

In applying the VSM variety measures are used to match people, machines and money to jobs that produce products or services. In a set of processes some jobs are done by one person. Some are done by many and often many processes are done by the same person. Throughout the working day a participant, in completing a task, may find the focus shifts between internal and external Systems 1–5 from moment to moment.

The choices, or decisions discriminated, and their cost (or effort) defines the variety and hence resources needed for the job. The processes (Systems 1) are operationally managed by System 3 by monitoring performance and assuring (System 2) the flow of product between System 1s and out to users.

System 3 is able to audit (via 3*) past performance so "bad times" for production can be compared to "good times". If things go wrong and levels of risk increase the System 3 asks for help or puts it to colleagues for a remedy. This is the pain of an algedonic alert, which can be automatic when performance fails to achieve capability targets. The autonomic 3–2–1 homeostatic loop's problem is absorbed for solution within the autonomy of its metasystem. Development (the System 4 role of research and marketing) is asked for recommendations.

If more resources are required System 5 has to make the decision on which is the best option from System 4. Escalation to higher management (up the metalinguistic levels of recursion) will be needed if the remedy requires more resources than the current level of capability or variety can sustain. The pleasure of an algedonic alert which are performance improving innovations can also be handled in this way.

In a small business all these functions might be done by one person or shared between the participants. In larger enterprises roles can differentiate and become more specialized emphasizing one or more aspects of the VSM. Local conditions, the environment and nature of the service or product, determines where warehousing, sales, advertising, promotion, dispatch, taxation, finance, salaries etc., fit into this picture. Not all enterprises charge for their transactions (e.g. some schools and medical services, policing) and voluntary staff may not be paid. Advertising or shipping might not be part of the business or they might be the principal activity. Whatever the circumstances, all enterprises are required to be useful to their users if they are to remain viable. For all participants the central question remains: "Do I do what I always do for this transaction or do I innovate?" It is embodied in the calls on System 4. The VSM describes the constraints: a knowledge of past performance and how it may be improved.

Beer dedicated Brain of the Firm to his colleagues past and present with the words "absolutum obsoletum" which he translated as "If it works it's out of date".

See also

Related Research Articles

<span class="mw-page-title-main">Recursion</span> Process of repeating items in a self-similar way

Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances, it is often done in such a way that no infinite loop or infinite chain of references can occur.

<span class="mw-page-title-main">Stafford Beer</span> British management consultant and cyberneticist

Anthony Stafford Beer was a British theorist, consultant and professor at the Manchester Business School. He is best known for his work in the fields of operational research and management cybernetics.

<span class="mw-page-title-main">Self-organization</span> Process of creating order by local interactions

Self-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system. As such, the organization is typically robust and able to survive or self-repair substantial perturbation. Chaos theory discusses self-organization in terms of islands of predictability in a sea of chaotic unpredictability.

<span class="mw-page-title-main">W. Ross Ashby</span> English psychiatrist (1903–1972)

William Ross Ashby was an English psychiatrist and a pioneer in cybernetics, the study of the science of communications and automatic control systems in both machines and living things. His first name was not used: he was known as Ross Ashby.

Second-order cybernetics, also known as the cybernetics of cybernetics, is the recursive application of cybernetics to itself and the reflexive practice of cybernetics according to such a critique. It is cybernetics where "the role of the observer is appreciated and acknowledged rather than disguised, as had become traditional in western science". Second-order cybernetics was developed between the late 1960s and mid 1970s by Heinz von Foerster and others, with key inspiration coming from Margaret Mead. Foerster referred to it as "the control of control and the communication of communication" and differentiated first order cybernetics as "the cybernetics of observed systems" and second-order cybernetics as "the cybernetics of observing systems".

<span class="mw-page-title-main">Gordon Pask</span> British cybernetician and psychologist (1928–1996)

Andrew Gordon Speedie Pask was a British cybernetician, inventor and polymath who made during his lifetime multiple contributions to cybernetics, educational psychology, educational technology, epistemology, chemical computing, architecture, and the performing arts. During his life he gained three doctorate degrees. He was an avid writer, with more than two hundred and fifty publications which included a variety of journal articles, books, periodicals, patents, and technical reports. He also worked as an academic and researcher for a variety of educational settings, research institutes, and private stakeholders including but not limited to the University of Illinois, Concordia University, the Open University, Brunel University and the Architectural Association School of Architecture. He is known for the development of conversation theory.

<span class="mw-page-title-main">Enterprise modelling</span>

Enterprise modelling is the abstract representation, description and definition of the structure, processes, information and resources of an identifiable business, government body, or other large organization.

Isomorphism or isomorph may refer to:

In cybernetics, the term variety denotes the total number of distinguishable elements of a set, most often the set of states, inputs, or outputs of a finite-state machine or transformation, or the binary logarithm of the same quantity. Variety is used in cybernetics as an information theory that is easily related to deterministic finite automata, and less formally as a conceptual tool for thinking about organization, regulation, and stability. It is an early theory of complexity in automata, complex systems, and operations research.

<span class="mw-page-title-main">Management cybernetics</span> Application of cybernetics to management and organizations

Management cybernetics is concerned with the application of cybernetics to management and organizations. "Management cybernetics" was first introduced by Stafford Beer in the late 1950s and introduces the various mechanisms of self-regulation applied by and to organizational settings, as seen through a cybernetics perspective. Beer developed the theory through a combination of practical applications and a series of influential books. The practical applications involved steel production, publishing and operations research in a large variety of different industries. Some consider that the full flowering of management cybernetics is represented in Beer's books. However, learning continues.

<span class="mw-page-title-main">Allenna Leonard</span> American cyberneticist

Allenna Leonard is an American cyberneticist, consultant and director of Team Syntegrity International, specializing in the application of Stafford Beer's Viable System Model and Syntegration. She was president of the International Society for the Systems Sciences in 2009–2010, and led the organization of its 54th annual meeting in Waterloo, Canada.

<span class="mw-page-title-main">Cybernetics</span> Transdisciplinary field concerned with regulatory and purposive systems

Cybernetics is a field of systems theory that studies circular causal systems whose outputs are also inputs, such as feedback systems. It is concerned with the general principles of circular causal processes, including in ecological, technological, biological, cognitive and social systems and also in the context of practical activities such as designing, learning, and managing.

The viable systems approach (VSA) is a systems theory in which the observed entities and their environment are interpreted through a systemic viewpoint, starting with the analysis of fundamental elements and finally considering more complex related systems. The assumption is that each entity/system is related to other systems, placed at higher level of observation, called supra-systems, whose traits can be detected in their own subsystems.

Markus Schwaninger is an Austrian economist and Professor of Management at the University of St. Gallen, Switzerland, and Director of the International World Organization of Systems and Cybernetics. He is known for his co-authorship of the St. Galler Management-Model.

<span class="mw-page-title-main">Project Cybersyn</span> Chilean economic project

Project Cybersyn was a Chilean project from 1971 to 1973 during the presidency of Salvador Allende aimed at constructing a distributed decision support system to aid in the management of the national economy. The project consisted of four modules: an economic simulator, custom software to check factory performance, an operations room, and a national network of telex machines that were linked to one mainframe computer.

Viable system theory (VST) concerns cybernetic processes in relation to the development/evolution of dynamical systems: it can be used to explain living systems, which are considered to be complex and adaptive, can learn, and are capable of maintaining an autonomous existence, at least within the confines of their constraints. These attributes involve the maintenance of internal stability through adaptation to changing environments. One can distinguish between two strands such theory: formal systems and principally non-formal system. Formal viable system theory is normally referred to as viability theory, and provides a mathematical approach to explore the dynamics of complex systems set within the context of control theory. In contrast, principally non-formal viable system theory is concerned with descriptive approaches to the study of viability through the processes of control and communication, though these theories may have mathematical descriptions associated with them.

Autonomous agency theory (AAT) is a viable system theory (VST) which models autonomous social complex adaptive systems. It can be used to model the relationship between an agency and its environment(s), and these may include other interactive agencies. The nature of that interaction is determined by both the agency's external and internal attributes and constraints. Internal attributes may include immanent dynamic "self" processes that drive agency change.

Self-organization, a process where some form of overall order arises out of the local interactions between parts of an initially disordered system, was discovered in cybernetics by William Ross Ashby in 1947. It states that any deterministic dynamic system automatically evolves towards a state of equilibrium that can be described in terms of an attractor in a basin of surrounding states. Once there, the further evolution of the system is constrained to remain in the attractor. This constraint implies a form of mutual dependency or coordination between its constituent components or subsystems. In Ashby's terms, each subsystem has adapted to the environment formed by all other subsystems.

An algedonic signal is a pre-emptive message concerning pleasure or pain. An arousal mechanism can generate an algedonic signal, and thus provide an important survival mechanism to a living organism by alerting it to a threat. An example of the disastrous consequences of such a system not being in place is that of a moth attracted by the light of an open flame without recognising the danger of fire.

The following outline is provided as an overview of and topical guide to management:

References

  1. Brain of the Firm, Beer Allen Lane, 1972.
  2. Brain of the Firm, 2nd Edition, Pg 155.
  3. Brain of the Firm, 2nd Edition, Pg 167.
  4. Brain of the Firm, 2nd Edition, Pg 181.
  5. Brain of the Firm, 2nd Edition, Pg 201.
  6. Brain of the Firm Chapters 6 and 7.
  7. Beer, Wiley 1979.
  8. Stafford., Beer (1985). Diagnosing the system for organizations . Chichester [West Sussex]: Wiley. ISBN   978-0471906759. OCLC   11469665.
  9. Beer, Stafford (1984). "The Viable System Model: Its Provenance, Development, Methodology and Pathology". The Journal of the Operational Research Society. 35 (1): 7–25. doi:10.2307/2581927. JSTOR   2581927.
  10. Achterberg, Jan; Vriens, Dirk (2010). "Specific Design Principles: de Sitter's Organizational Structures". Organizations. Springer Berlin. pp. 183–188. doi:10.1007/978-3-642-14316-8_7. ISBN   978-3-642-14315-1.
  11. Discussed in "The Heart of Enterprise" pp 214- 217
  12. "The Heart of Enterprise" page 353: x belongs to metasystem (5, 4, 3, 2) y and are one level apart.
  13. Eudemony -sustainable, ethical pleasure c.f. immediate hedonistic pleasure. See also Eudaimonia
  14. "Paul Stokes Bio - Homo Gubernator: Emotions and Human Self-Steering". University College Dublin. Archived from the original on February 9, 2008. Retrieved 26 January 2014.

Further reading

Organizations