Vieta jumping

Last updated

In number theory, Vieta jumping, also known as root flipping, is a proof technique. It is most often used for problems in which a relation between two integers is given, along with a statement to prove about its solutions. In particular, it can be used to produce new solutions of a quadratic Diophantine equation from known ones. There exist multiple variations of Vieta jumping, all of which involve the common theme of infinite descent by finding new solutions to an equation using Vieta's formulas.

Contents

History

Vieta jumping is a classical method in the theory of quadratic Diophantine equations and binary quadratic forms. For example, it was used in the analysis of the Markov equation back in 1879 and in the 1953 paper of Mills. [1]

In 1988, the method came to the attention to mathematical olympiad problems in the light of the first olympiad problem to use it in a solution that was proposed for the International Mathematics Olympiad and assumed to be the most difficult problem on the contest: [2] [3]

Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that is the square of an integer. [4]

Arthur Engel wrote the following about the problem's difficulty:

Nobody of the six members of the Australian problem committee could solve it. Two of the members were husband and wife George and Esther Szekeres, both famous problem solvers and problem creators. Since it was a number theoretic problem it was sent to the four most renowned Australian number theorists. They were asked to work on it for six hours. None of them could solve it in this time. The problem committee submitted it to the jury of the XXIX IMO marked with a double asterisk, which meant a superhard problem, possibly too hard to pose. After a long discussion, the jury finally had the courage to choose it as the last problem of the competition. Eleven students gave perfect solutions.

Among the eleven students receiving the maximum score for solving this problem were Ngô Bảo Châu, Ravi Vakil, Zvezdelina Stankova, and Nicușor Dan. [5] Emanouil Atanassov (from Bulgaria) solved the problem in a paragraph and received a special prize. [6]

Standard Vieta jumping

The concept of standard Vieta jumping is a proof by contradiction, and consists of the following four steps: [7]

  1. Assume toward a contradiction that some solution (a1, a2, ...) exists that violates the given requirements.
  2. Take the minimal such solution according to some definition of minimality.
  3. Replace some ai by a variable x in the formulas, and obtain an equation for which ai is a solution.
  4. Using Vieta's formulas, show that this implies the existence of a smaller solution, hence a contradiction.
Example

Problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a2 + b2. Prove that a2 + b2/ab + 1 is a perfect square. [8] [9]

  1. Fix some value k that is a non-square positive integer. Assume there exist positive integers (a, b) for which k = a2 + b2/ab + 1.
  2. Let (A, B) be positive integers for which k = A2 + B2/AB + 1 and such that A + B is minimized, and without loss of generality assume AB.
  3. Fixing B, replace A with the variable x to yield x2 – (kB)x + (B2k) = 0. We know that one root of this equation is x1 = A. By standard properties of quadratic equations, we know that the other root satisfies x2 = kBA and x2 = B2k/A.
  4. The first expression for x2 shows that x2 is an integer, while the second expression implies that x2 ≠ 0 since k is not a perfect square. From x22 + B2/x2B + 1 = k > 0 it further follows that x2B > −1, and hence x2 is a positive integer. Finally, AB implies that x2 = B2k/A < B2/AA, hence x2 < A, and thus x2 + B < A + B, which contradicts the minimality of A + B.

Constant descent Vieta jumping

The method of constant descent Vieta jumping is used when we wish to prove a statement regarding a constant k having something to do with the relation between a and b. Unlike standard Vieta jumping, constant descent is not a proof by contradiction, and it consists of the following four steps: [10]

  1. The equality case is proven so that it may be assumed that a > b.
  2. b and k are fixed and the expression relating a, b, and k is rearranged to form a quadratic with coefficients in terms of b and k, one of whose roots is a. The other root, x2 is determined using Vieta's formulas.
  3. For all (a, b) above a certain base case, show that 0 < x2 < b < a and that x2 is an integer. Thus, while maintaining the same k, we may replace (a, b) with (b, x2) and repeat this process until we arrive at the base case.
  4. Prove the statement for the base case, and as k has remained constant through this process, this is sufficient to prove the statement for all ordered pairs.
Example

Let a and b be positive integers such that ab divides a2 + b2 + 1. Prove that 3ab = a2 + b2 + 1. [11]

  1. If a = b, a2 dividing 2a2 + 1 implies that a2 divides 1, and hence the positive integers a = b = 1, and 3(1)(1) = 12 + 12 + 1. So, without loss of generality, assume that a > b.
  2. For any (a, b) satisfying the given condition, let k = a2 + b2 + 1/ab and rearrange and substitute to get x2 − (kb)x + (b2 + 1) = 0. One root to this quadratic is a, so by Vieta's formulas the other root may be written as follows: x2 = kba = b2 + 1/a.
  3. The first equation shows that x2 is an integer and the second that it is positive. Because a > b and they are both integers, ab + 1, and hence abb2 + b; As long as b > 1, we always have ab > b2 + 1, and therefore x2 = b2 + 1/a < b. Thus, while maintaining the same k, we may replace (a, b) with (b, x2) and repeat this process until we arrive at the base case.
  4. The base case we arrive at is the case where b = 1. For (a, 1) to satisfy the given condition, a must divide a2 + 2, which implies that a divides 2, making a either 1 or 2. The first case is eliminated because a = b. In the second case, k = a2 + b2 + 1/ab = 6/2 = 3. As k has remained constant throughout this process of Vieta jumping, this is sufficient to show that for any (a, b) satisfying the given condition, k will always equal 3.

Geometric interpretation

Vieta jumping can be described in terms of lattice points on hyperbolas in the first quadrant. [2] The same process of finding smaller roots is used instead to find lower lattice points on a hyperbola while remaining in the first quadrant. The procedure is as follows:

  1. From the given condition we obtain the equation of a family of hyperbolas that are unchanged by switching x and y so that they are symmetric about the line y = x.
  2. Prove the desired statement for the intersections of the hyperbolas and the line y = x.
  3. Assume there is some lattice point (x, y) on some hyperbola and without loss of generality x < y. Then by Vieta's formulas, there is a corresponding lattice point with the same x-coordinate on the other branch of the hyperbola, and by reflection through y = x a new point on the original branch of the hyperbola is obtained.
  4. It is shown that this process produces lower points on the same branch and can be repeated until some condition (such as x = 0) is achieved. Then by substitution of this condition into the equation of the hyperbola, the desired conclusion will be proven.
Example

This method can be applied to problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a2 + b2. Prove that a2 + b2/ab + 1 is a perfect square.

  1. Let a2 + b2/ab + 1 = q and fix the value of q. If q = 1, q is a perfect square as desired. If q = 2, then (a-b)2 = 2 and there is no integral solution a, b. When q > 2, the equation x2 + y2qxyq = 0 defines a hyperbola H and (a,b) represents an integral lattice point on H.
  2. If (x,x) is an integral lattice point on H with x > 0, then (since q is integral) one can see that x = 1. This proposition's statement is then true for the point (x,x).
  3. Now let P = (x, y) be a lattice point on a branch H with x, y > 0 and xy (as the previous remark covers the case x = y). By symmetry, we can assume that x < y and that P is on the higher branch of H. By applying Vieta's Formulas, (x, qxy) is a lattice point on the lower branch of H. Let y = qxy. From the equation for H, one sees that 1 + xy > 0. Since x > 0, it follows that y ≥ 0. Hence the point (x, y) is in the first quadrant. By reflection, the point (y, x) is also a point in the first quadrant on H. Moreover from Vieta's formulas, yy = x2 - q, and y = x2 - q/y. Combining this equation with x < y, one can show that y < x. The new constructed point Q = (y, x) is then in the first quadrant, on the higher branch of H, and with smaller x,y-coordinates than the point P we started with.
  4. The process in the previous step can be repeated whenever the point Q has a positive x-coordinate. However, since the x-coordinates of these points will form a decreasing sequence of non-negative integers, the process can only be repeated finitely many times before it produces a point Q = (0, y) on the upper branch of H; by substitution, q = y2 is a square as required.

See also

Notes

  1. Mills 1953.
  2. 1 2 Arthur Engel (1998). Problem Solving Strategies. Problem Books in Mathematics. Springer. p. 127. doi:10.1007/b97682. ISBN   978-0-387-98219-9.
  3. "The Return of the Legend of Question Six". Numberphile . August 16, 2016. Archived from the original on 2021-12-20 via YouTube.
  4. "International Mathematical Olympiad". www.imo-official.org. Retrieved 29 September 2020.
  5. "Results of the 1988 International Mathematical Olympiad". Imo-official.org. Retrieved 2013-03-03.
  6. "Individual ranking of Emanouil Atanassov". International Mathematical Olympiad.
  7. Yimin Ge (2007). "The Method of Vieta Jumping" (PDF). Mathematical Reflections. 5.
  8. "AoPS Forum – One of my favourites problems, yeah!". Artofproblemsolving.com. Retrieved 2023-01-08.
  9. K. S. Brown. "N = (x^2 + y^2)/(1+xy) is a Square". MathPages.com. Retrieved 2016-09-26.
  10. "AoPS Forum — Lemur Numbers". Artofproblemsolving.com. Retrieved 2023-01-08.
  11. "AoPS Forum – x*y | x^2+y^2+1". Artofproblemsolving.com. 2005-06-07. Retrieved 2023-01-08.

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle and is a right triangle.

<span class="mw-page-title-main">Pell's equation</span> Type of Diophantine equation

Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a formula that provides the two solutions, or roots, to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as completing the square.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

<span class="mw-page-title-main">Congruent number</span>

In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. A more general definition includes all positive rational numbers with this property.

<span class="mw-page-title-main">Eisenstein integer</span> Complex number whose mapping on a coordinate plane produces a triangular lattice

In mathematics, the Eisenstein integers, occasionally also known as Eulerian integers, are the complex numbers of the form

<span class="mw-page-title-main">Trinomial</span> Polynomial that has three terms

In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials.

<span class="mw-page-title-main">Pythagorean quadruple</span> Four integers where the sum of the squares of three equals the square of the fourth

A Pythagorean quadruple is a tuple of integers a, b, c, and d, such that a2 + b2 + c2 = d2. They are solutions of a Diophantine equation and often only positive integer values are considered. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that d > 0. In this setting, a Pythagorean quadruple (a, b, c, d) defines a cuboid with integer side lengths |a|, |b|, and |c|, whose space diagonal has integer length d; with this interpretation, Pythagorean quadruples are thus also called Pythagorean boxes. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers.

In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form