In number theory, Vinogradov's theorem is a result which implies that any sufficiently large odd integer can be written as a sum of three prime numbers. It is a weaker form of Goldbach's weak conjecture, which would imply the existence of such a representation for all odd integers greater than five. It is named after Ivan Matveyevich Vinogradov who proved it in the 1930s. Hardy and Littlewood had shown earlier that this result followed from the generalized Riemann hypothesis, and Vinogradov was able to remove this assumption. The full statement of Vinogradov's theorem gives asymptotic bounds on the number of representations of an odd integer as a sum of three primes. The notion of "sufficiently large" was ill-defined in Vinogradov's original work, but in 2002 it was shown that 101346 is sufficiently large. [1] [2] Additionally numbers up to 1020 had been checked via brute force methods, [3] thus only a finite number of cases to check remained before the odd Goldbach conjecture would be proven or disproven. In 2013, Harald Helfgott proved Goldbach's weak conjecture for all cases.
Let A be a positive real number. Then
where
using the von Mangoldt function , and
If N is odd, then G(N) is roughly 1, hence for all sufficiently large N. By showing that the contribution made to r(N) by proper prime powers is , one sees that
This means in particular that any sufficiently large odd integer can be written as a sum of three primes, thus showing Goldbach's weak conjecture for all but finitely many cases.
The proof of the theorem follows the Hardy–Littlewood circle method. Define the exponential sum
Then we have
where denotes the number of representations restricted to prime powers . Hence
If is a rational number , then can be given by the distribution of prime numbers in residue classes modulo . Hence, using the Siegel–Walfisz theorem we can compute the contribution of the above integral in small neighbourhoods of rational points with small denominator. The set of real numbers close to such rational points is usually referred to as the major arcs, the complement forms the minor arcs. It turns out that these intervals dominate the integral, hence to prove the theorem one has to give an upper bound for for contained in the minor arcs. This estimate is the most difficult part of the proof.
If we assume the Generalized Riemann Hypothesis, the argument used for the major arcs can be extended to the minor arcs. This was done by Hardy and Littlewood in 1923. In 1937 Vinogradov gave an unconditional upper bound for . His argument began with a simple sieve identity, the resulting terms were then rearranged in a complicated way to obtain some cancellation. In 1977 R. C. Vaughan found a much simpler argument, based on what later became known as Vaughan's identity. He proved that if , then
Using the Siegel–Walfisz theorem we can deal with up to arbitrary powers of , using Dirichlet's approximation theorem we obtain on the minor arcs. Hence the integral over the minor arcs can be bounded above by
which gives the error term in the theorem.
In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that
In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3 ≡ p is solvable if and only if x3 ≡ q is solvable.
In mathematics and analytic number theory, Vaughan's identity is an identity found by R. C. Vaughan (1977) that can be used to simplify Vinogradov's work on trigonometric sums. It can be used to estimate summatory functions of the form
In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4 ≡ p is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4 ≡ p to that of x4 ≡ q.
Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.
Khabibullin's conjecture is a conjecture in mathematics related to Paley's problem for plurisubharmonic functions and to various extremal problems in the theory of entire functions of several variables. The conjecture was named after its proposer, B. N. Khabibullin.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.