Visco-elastic jets

Last updated
Saliva exhibits viscoelastic "beads-on-a-string" structure. Saliva Thread.jpg
Saliva exhibits viscoelastic "beads-on-a-string" structure.

A viscoelastic jet is a projected stream (jet) of a viscoelastic fluid (a fluid that disobeys Newton's law of viscosity). A viscoelastic fluid returns to its original shape after the applied stress is released.

Contents

Free surface continuous jets of viscoelastic fluids are relevant in engineering applications involving blood, paints, adhesives, and foodstuff as well as in industrial processes like fiber spinning, bottle filling, and oil drilling. In process engineering, it is essential to understand the instabilities a jet undergoes due to changes in fluid parameters like Reynolds number or Deborah number. With the advent of microfluidics, an understanding of the jetting properties of non-Newtonian fluids becomes essential from micro- to macro-length scales, and from low to high Reynolds numbers.

Description

Draining.jpg
Drop draining
Merging.jpg
Drop merging
Collision1.jpg
Drop collision
Oscillation.jpg
Oscillation1.jpg
Drop oscillation
(right image is a continuation of left image)

A jet of a Newtonian fluid, such as honey poured from a bottle, thins continuously and coils regularly. [1] In contrast, a viscoelastic jet breaks up much more slowly. Typically, it evolves into a "beads-on-a-string" structure, where large drops are connected by thin threads. The slow breakup process provides the viscoelastic jet sufficient time to exhibit other phenomena, including:

The behaviors of non-Newtonian fluids result from the interplay of non-Newtonian properties (e.g. viscoelasticity, shear-thinning) with gravitational, viscous, and inertial effects. [1] [ needs update ]

The evolution of a viscoelastic fluid thread over time depends on the relative magnitude of the viscous, inertial, and elastic stresses and the capillary pressure. To study the inertio-elasto-capillary balance for a jet, two dimensionless parameters are defined: the Ohnesorge number (Oh)

which is the inverse of the Reynolds number based on a characteristic capillary velocity ; and the intrinsic Deborah number (De), defined as

where is the "Rayleigh time scale" for inertio-capillary breakup of an inviscid jet. In these expressions, is the fluid density, is the fluid zero shear viscosity, is the surface tension, is the initial radius of the jet, and is the relaxation time associated with the polymer solution.

Equations

Like other fluids, when considering viscoelastic flows, the velocity, pressure, and stress must satisfy equations of mass and momentum, supplemented with a constitutive equation involving the velocity and stress.

The behaviors of weakly viscoelastic jets can be described by the following set of mathematical equations:

where is the axial velocity; and are the solvent and polymer contribution to the total viscosity, respectively (total viscosity ); indicates the partial derivative ; and and are the diagonal terms of the extra-stress tensor. Equation ( 1 ) represents mass conservation, and Equation ( 2 ) represents the momentum equation in one dimension. The extra-stress tensors and can be calculated as follows:

where is the relaxation time of the liquid, and is the mobility factor, a positive dimensionless parameter corresponding to the anisotropy of the hydrodynamic drag on the polymer molecules.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

A viscometer is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers can measure only constant viscosity, that is, viscosity that does not change with flow conditions.

Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

The upper-convected Maxwell (UCM) model is a generalisation of the Maxwell material for the case of large deformations using the upper-convected time derivative. The model was proposed by James G. Oldroyd. The concept is named after James Clerk Maxwell. It is the simplest observer independent constitutive equation for viscoelasticity and further is able to reproduce first normal stresses. Thus, it constitutes one of the most fundamental models for rheology.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

Extensional viscosity is a viscosity coefficient when the applied stress is extensional stress. It is often used for characterizing polymer solutions. Extensional viscosity can be measured using rheometers that apply extensional stress. Acoustic rheometer is one example of such devices.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.

In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point or a stagnation line with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of stagnation points known as saddle points wherein incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

Capillary breakup rheometry is an experimental technique used to assess the extensional rheological response of low viscous fluids. Unlike most shear and extensional rheometers, this technique does not involve active stretch or measurement of stress or strain but exploits only surface tension to create a uniaxial extensional flow. Hence, although it is common practice to use the name rheometer, capillary breakup techniques should be better addressed to as indexers.

Becker–Morduchow–Libby solution is an exact solution of the compressible Navier–Stokes equations, that describes the structure of one-dimensional shock waves. The solution was discovered in a restrictive form by Richard Becker in 1922, which was generalized by Morris Morduchow and Paul A. Libby in 1949. The solution was also discovered independently by M. Roy and L. H. Thomas in 1944 The solution showed that there is a non-monotonic variation of the entropy across the shock wave. Before these works, Lord Rayleigh obtained solutions in 1910 for fluids with viscosity but without heat conductivity and for fluids with heat conductivity but without viscosity. Following this, in the same year G. I. Taylor solved the whole problem for weak shock waves by taking both viscosity and heat conductivity into account.

References

  1. 1 2 McKinley, Gareth (Nov 18, 2013). "Viscoelastic Jet". Gareth McKinley's Non-Newtonian Fluid Dynamics Research Group. MIT. Retrieved 2025-01-24.