Deborah number

Last updated

The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough. Materials that have low relaxation times flow easily and as such show relatively rapid stress decay.

Contents

Definition

The Deborah number is the ratio of fundamentally different characteristic times. The Deborah number is defined as the ratio of the time it takes for a material to adjust to applied stresses or deformations, and the characteristic time scale of an experiment (or a computer simulation) probing the response of the material:

where tc stands for the relaxation time and tp for the "time of observation", typically taken to be the time scale of the process. [1]

The numerator, relaxation time, is the time needed for a reference amount of deformation to occur under a suddenly applied reference load (a more fluid-like material will therefore require less time to flow, giving a lower Deborah number relative to a solid subjected to the same loading rate).

The denominator, material time, [2] is the amount of time required to reach a given reference strain (a faster loading rate will therefore reach the reference strain sooner, giving a higher Deborah number).

Equivalently, the relaxation time is the time required for the stress induced, by a suddenly applied reference strain, to reduce by a certain reference amount. The relaxation time is actually based on the rate of relaxation that exists at the moment of the suddenly applied load.

This incorporates both the elasticity and viscosity of the material. At lower Deborah numbers, the material behaves in a more fluidlike manner, with an associated Newtonian viscous flow. At higher Deborah numbers, the material behavior enters the non-Newtonian regime, increasingly dominated by elasticity and demonstrating solidlike behavior. [3] [4]

For example, for a Hookean elastic solid, the relaxation time tc will be infinite and it will vanish for a Newtonian viscous fluid. For liquid water, tc is typically 10−12 s, for lubricating oils passing through gear teeth at high pressure it is of the order of 10−6 s and for polymers undergoing plastics processing, the relaxation time will be of the order of a few seconds. Therefore, depending on the situation, these liquids may exhibit elastic properties, departing from purely viscous behavior. [5]

While De is similar to the Weissenberg number and is often confused with it in technical literature, they have different physical interpretations. The Weissenberg number indicates the degree of anisotropy or orientation generated by the deformation, and is appropriate to describe flows with a constant stretch history, such as simple shear. In contrast, the Deborah number should be used to describe flows with a non-constant stretch history, and physically represents the rate at which elastic energy is stored or released. [1]

History

The Deborah number was originally proposed by Markus Reiner, a professor at Technion in Israel, who chose the name inspired by a verse in the Bible, stating "The mountains flowed before the Lord" in a song by the prophetess Deborah in the Book of Judges; [6] הָרִ֥ים נָזְל֖וּ מִפְּנֵ֣י יְהוָ֑ה hā-rîm nāzəlū mippənê Yahweh ). [3] [7] In his 1964 paper (a reproduction of his after-dinner speech to the Fourth International Congress on Rheology in 1962), [8] [9] Markus Reiner further elucidated the name's origin: [8]

“Deborah knew two things.  First, that the mountains flow, as everything flows. But, secondly, that they flowed before the Lord, and not before man, for the simple reason that man in his short lifetime cannot see them flowing, while the time of observation of God is infinite. We may therefore well define a nondimensional number the Deborah number D = time of relaxation/time of observation.”

Time-temperature superposition

The Deborah number is particularly useful in conceptualizing the time–temperature superposition principle. Time-temperature superposition has to do with altering experimental time scales using reference temperatures to extrapolate temperature-dependent mechanical properties of polymers. A material at low temperature with a long experimental or relaxation time behaves like the same material at high temperature and short experimental or relaxation time if the Deborah number remains the same. This can be particularly useful when working with materials which relax on a long time scale under a certain temperature. The practical application of this idea arises in the Williams–Landel–Ferry equation. Time-temperature superposition avoids the inefficiency of measuring a polymer's behavior over long periods of time at a specified temperature by utilizing the Deborah number. [10]

Related Research Articles

Rheology is the study of the flow of matter, primarily in a fluid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.

A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo.

<span class="mw-page-title-main">Weissenberg number</span>

The Weissenberg number (Wi) is a dimensionless number used in the study of viscoelastic flows. It is named after Karl Weissenberg. The dimensionless number compares the elastic forces to the viscous forces. It can be variously defined, but it is usually given by the relation of stress relaxation time of the fluid and a specific process time. For instance, in simple steady shear, the Weissenberg number, often abbreviated as Wi or We, is defined as the shear rate times the relaxation time . Using the Maxwell model and the Oldroyd-B model, the elastic forces can be written as the first Normal force (N1).

Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.

In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid.

<span class="mw-page-title-main">Bingham plastic</span> Material which is solid at low stress but becomes viscous at high stress

In materials science, a Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form.

Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Thixotropy</span> Change in viscosity of a gel or fluid caused by stress

Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow over time when shaken, agitated, shear-stressed, or otherwise stressed. They then take a fixed time to return to a more viscous state. Some non-Newtonian pseudoplastic fluids show a time-dependent change in viscosity; the longer the fluid undergoes shear stress, the lower its viscosity. A thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a steep change in shear rate. Some thixotropic fluids return to a gel state almost instantly, such as ketchup, and are called pseudoplastic fluids. Others such as yogurt take much longer and can become nearly solid. Many gels and colloids are thixotropic materials, exhibiting a stable form at rest but becoming fluid when agitated. Thixotropy arises because particles or structured solutes require time to organize. An overview of thixotropy has been provided by Mewis and Wagner.

<span class="mw-page-title-main">Rheometer</span> Scientific instrument used to measure fluid flow (rheology)

A rheometer is a laboratory device used to measure the way in which a viscous fluid flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. It measures the rheology of the fluid.

<span class="mw-page-title-main">Shear thinning</span> Non-Newtonian fluid behavior

In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo-plastic behaviour, and is usually defined as excluding time-dependent effects, such as thixotropy.

<span class="mw-page-title-main">Geodynamics</span> Study of dynamics of the Earth

Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mountain building, volcanoes, earthquakes, faulting. It also attempts to probe the internal activity by measuring magnetic fields, gravity, and seismic waves, as well as the mineralogy of rocks and their isotopic composition. Methods of geodynamics are also applied to exploration of other planets.

<span class="mw-page-title-main">Time–temperature superposition</span>

The time–temperature superposition principle is a concept in polymer physics and in the physics of glass-forming liquids. This superposition principle is used to determine temperature-dependent mechanical properties of linear viscoelastic materials from known properties at a reference temperature. The elastic moduli of typical amorphous polymers increase with loading rate but decrease when the temperature is increased. Curves of the instantaneous modulus as a function of time do not change shape as the temperature is changed but appear only to shift left or right. This implies that a master curve at a given temperature can be used as the reference to predict curves at various temperatures by applying a shift operation. The time-temperature superposition principle of linear viscoelasticity is based on the above observation.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds.

Constant viscosity elastic liquids, also known as Boger fluids are elastic fluids with constant viscosity. This creates an effect in the fluid where it flows like a liquid, yet behaves like an elastic solid when stretched out. Most elastic fluids exhibit shear thinning, because they are solutions containing polymers. But Boger fluids are exceptions since they are highly dilute solutions, so dilute that shear thinning caused by the polymers can be ignored. Boger fluids are made primarily by adding a small amount of polymer to a Newtonian fluid with a high viscosity, a typical solution being polyacrylamide mixed with corn syrup. It is a simple compound to synthesize but important to the study of rheology because elastic effects and shear effects can be clearly distinguished in experiments using Boger fluids. Without Boger fluids, it was difficult to determine if a non-Newtonian effect was caused by elasticity, shear thinning, or both; non-Newtonian flow caused by elasticity was rarely identifiable. Since Boger fluids can have constant viscosity, an experiment can be done where the results of the flow rates of a Boger liquid and a Newtonian liquid with the same viscosity can be compared, and the difference in the flow rates would show the change caused by the elasticity of the Boger liquid.

Rheological weldability (RW) of thermoplastics considers the materials flow characteristics in determining the weldability of the given material. The process of welding thermal plastics requires three general steps, first is surface preparation. The second step is the application of heat and pressure to create intimate contact between the components being joined and initiate inter-molecular diffusion across the joint and the third step is cooling. RW can be used to determine the effectiveness of the second step of the process for given materials.

<span class="mw-page-title-main">Rachel (Raya) Takserman-Krozer</span> Theoretical physicist

Rachel (Raya) Takserman-Krozer [] was a theoretical physicist and professor of rheology. Takserman-Krozer worked on diverse aspects of theoretical physics ranging from theory of relativity to studies of polymers and their flow. Her scientific work includes contributions to behaviour of polymers and polymers solutions in velocity fields, theory of spinnability, problems of phenomenological rheology, and molecular-statistical theory of polymer networks. Takserman-Krozer worked across several countries including Russia, Poland, Israel, and Germany.

References

  1. 1 2 Poole, R J (2012). "The Deborah and Weissenberg numbers" (PDF). Rheology Bulletin. 53 (2): 32–39.
  2. Franck, A. "Viscoelasticity and dynamic mechanical testing" (PDF). TA Instruments. TA Instruments Germany. Retrieved 26 March 2019.
  3. 1 2 Reiner, M. (1964), "The Deborah Number", Physics Today, 17 (1): 62, Bibcode:1964PhT....17a..62R, doi:10.1063/1.3051374
  4. The Deborah Number Archived 2011-04-13 at the Wayback Machine
  5. Barnes, H.A.; Hutton, J.F.; Walters, K. (1989). An introduction to rheology (5. impr. ed.). Amsterdam: Elsevier. pp.  5–6. ISBN   978-0-444-87140-4.
  6. Judges 5:5
  7. Millgram, Hillel I. (2018). Judges and Saviors, Deborah and Samson: Reflections of a World in Chaos. Hamilton Books. pp. 123–. ISBN   978-0-7618-6990-0.
  8. 1 2 Reiner, M. (1964-01-01). "The Deborah Number". Physics Today. 17 (1): 62–62. doi:10.1063/1.3051374. ISSN   0031-9228.
  9. Phillips, Tim (2012-12-01). "The British Society of Rheology Midwinter Meeting: Complex Fluids and Complex Flows". Applied Rheology. 22 (2): 104–105. doi: 10.1515/arh-2012-0006 . ISSN   1617-8106.
  10. Rudin, Alfred, and Phillip Choi. The Elements of Polymer Science and Engineering. 3rd. Oxford: Academic Press, 2013. Print. Page 221.

Further reading