Bejan number

Last updated

There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.

Contents

Thermodynamics

In the field of thermodynamics the Bejan number is the ratio of heat transfer irreversibility to total irreversibility due to heat transfer and fluid friction: [1] [2]

where

is the entropy generation contributed by heat transfer
is the entropy generation contributed by fluid friction.

Schiubba has also achieved the relation between Bejan number Be and Brinkman number Br

Heat transfer and mass transfer

In the context of heat transfer. the Bejan number is the dimensionless pressure drop along a channel of length : [3]

where

is the dynamic viscosity
is the thermal diffusivity

The Be number plays in forced convection the same role that the Rayleigh number plays in natural convection.

In the context of mass transfer. the Bejan number is the dimensionless pressure drop along a channel of length : [4]

where

is the dynamic viscosity
is the mass diffusivity

For the case of Reynolds analogy (Le = Pr = Sc = 1), it is clear that all three definitions of Bejan number are the same.

Also, Awad and Lage: [5] obtained a modified form of the Bejan number, originally proposed by Bhattacharjee and Grosshandler for momentum processes, by replacing the dynamic viscosity appearing in the original proposition with the equivalent product of the fluid density and the momentum diffusivity of the fluid. This modified form is not only more akin to the physics it represents but it also has the advantage of being dependent on only one viscosity coefficient. Moreover, this simple modification allows for a much simpler extension of Bejan number to other diffusion processes, such as a heat or a species transfer process, by simply replacing the diffusivity coefficient. Consequently, a general Bejan number representation for any process involving pressure-drop and diffusion becomes possible. It is shown that this general representation yields analogous results for any process satisfying the Reynolds analogy (i.e., when Pr = Sc = 1), in which case the momentum, energy, and species concentration representations of Bejan number turn out to be the same.

Therefore, it would be more natural and broad to define Be in general, simply as:

where

is the fluid density
is the corresponding diffusivity of the process in consideration.

In addition, Awad: [6] presented Hagen number vs. Bejan number. Although their physical meaning is not the same because the former represents the dimensionless pressure gradient while the latter represents the dimensionless pressure drop, it will be shown that Hagen number coincides with Bejan number in cases where the characteristic length (l) is equal to the flow length (L).

Fluid mechanics

In the field of fluid mechanics the Bejan number is identical to the one defined in heat transfer problems, being the dimensionless pressure drop along the fluid path length in both external flows and internal flows: [7]

where

is the dynamic viscosity
is the momentum diffusivity (or Kinematic viscosity).

A further expression of Bejan number in the Hagen–Poiseuille flow will be introduced by Awad. This expression is

where

is the Reynolds number
is the flow length
is the pipe diameter

The above expression shows that the Bejan number in the Hagen–Poiseuille flow is indeed a dimensionless group, not recognized previously.

The Bhattacharjee and Grosshandler formulation of the Bejan number has large importance on fluid dynamics in the case of the fluid flow over a horizontal plane [8] because it is directly related to fluid dynamic drag D by the following expression of drag force

which allows expressing the drag coefficient as a function of Bejan number and the ratio between wet area and front area : [8]

where is the Reynolds Number related to fluid path length L. This expression has been verified experimentally in a wind tunnel. [9]

This equation represents the drag coefficient in terms of second law of thermodynamics: [10]

where is entropy generation rate and is exergy dissipation rate and ρ is density.

The above formulation allows expressing Bejan number in terms of second law of thermodynamics: [11] [12]

This expression is a fundamental step toward a representation of fluid dynamic problems in terms of the second law of thermodynamics. [13]

See also

Related Research Articles

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

<span class="mw-page-title-main">Jean Léonard Marie Poiseuille</span>

Jean Léonard Marie Poiseuille was a French physicist and physiologist.

In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference via the hydraulic conductivity.

The Hagen number (Hg) is a dimensionless number used in forced flow calculations. It is the forced flow equivalent of the Grashof number and was named after the German hydraulic engineer G. H. L. Hagen.

Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum diffusivity and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).

The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). It is used to characterize heat transfer in forced convection flows.

The Womersley number is a dimensionless number in biofluid mechanics and biofluid dynamics. It is a dimensionless expression of the pulsatile flow frequency in relation to viscous effects. It is named after John R. Womersley (1907–1958) for his work with blood flow in arteries. The Womersley number is important in keeping dynamic similarity when scaling an experiment. An example of this is scaling up the vascular system for experimental study. The Womersley number is also important in determining the thickness of the boundary layer to see if entrance effects can be ignored.

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number or Bond number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c. It is named after Rose Morton, who described it with W. L. Haberman in 1953.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

In granular mechanics, the μ(I) rheology is one model of the rheology of a granular flow.

References

  1. Paoletti, S.; Rispoli, F.; Sciubba, E. (1989). "Calculation of exergetic losses in compact heat exchanger passages". ASME AES. 10 (2): 21–29.
  2. Sciubba, E. (1996). A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers. Revue générale de thermique, 35(416), 517-525. [ dead link ]
  3. Petrescu, S. (1994). "Comments on 'The optimal spacing of parallel plates cooled by forced convection'". Int. J. Heat Mass Transfer . 37 (8): 1283. doi:10.1016/0017-9310(94)90213-5.
  4. Awad, M.M. (2012). "A new definition of Bejan number". Thermal Science . 16 (4): 1251–1253. doi: 10.2298/TSCI12041251A .
  5. Awad, M.M.; Lage, J. L. (2013). "Extending the Bejan number to a general form". Thermal Science . 17 (2): 631. doi: 10.2298/TSCI130211032A .
  6. Awad, M.M. (2013). "Hagen number versus Bejan number". Thermal Science . 17 (4): 1245–1250. doi: 10.2298/TSCI1304245A .
  7. Bhattacharjee, S.; Grosshandler, W. L. (1988). "The formation of wall jet near a high temperature wall under microgravity environment". ASME 1988 National Heat Transfer Conference. 96: 711–716. Bibcode:1988nht.....1..711B.
  8. 1 2 Liversage, P., and Trancossi, M. (2018). Analysis of triangular sharkskin profiles according to the second law, Modelling, Measurement and Control B. 87(3), 188-196. http://www.iieta.org/sites/default/files/Journals/MMC/MMC_B/87.03_11.pdf
  9. Trancossi, M. and Sharma, S., 2018. Numerical and Experimental Second Law Analysis of a Low Thickness High Chamber Wing Profile (No. 2018-01-1955). SAE Technical Paper. https://www.sae.org/publications/technical-papers/content/2018-01-1955/
  10. Herwig, H., and Schmandt, B., 2014. How to determine losses in a flow field: A paradigm shift towards the second law analysis.” Entropy 16.6 (2014): 2959-2989. DOI:10.3390/e16062959 https://www.mdpi.com/1099-4300/16/6/2959
  11. Trancossi, M., and Pascoa J.. "Modeling fluid dynamics and aerodynamics by second law and Bejan number (part 1-theory)." INCAS Bulletin 11, no. 3 (2019): 169-180. http://bulletin.incas.ro/files/trancossi__pascoa__vol_11_iss_3__a_1.pdf
  12. Trancossi, M., & Pascoa, J. (2019). Diffusive Bejan number and second law of thermodynamics toward a new dimensionless formulation of fluid dynamics laws. Thermal Science, (00), 340-340. http://www.doiserbia.nb.rs/ft.aspx?id=0354-98361900340T
  13. Trancossi, M., Pascoa, J., & Cannistraro, G. (2020). Comments on “New insight into the definitions of the Bejan number”. International Communications in Heat and Mass Transfer, 104997. https://doi.org/10.1016/j.icheatmasstransfer.2020.104997