Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed. To compare a real situation (e.g. an aircraft) with a small-scale model it is necessary to keep the important characteristic numbers the same. Names and formulation of these numbers were standardized in ISO 31-12 and in ISO 80000-11.
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | v d | Re | Pe | PeAB |
Viscous | Re −1 | μ/ρ, ν | Pr | Sc |
Thermal | Pe −1 | Pr −1 | α | Le |
Mass | PeAB −1 | Sc −1 | Le −1 | D |
As a general example of how dimensionless numbers arise in fluid mechanics, the classical numbers in transport phenomena of mass, momentum, and energy are principally analyzed by the ratio of effective diffusivities in each transport mechanism. The six dimensionless numbers give the relative strengths of the different phenomena of inertia, viscosity, conductive heat transport, and diffusive mass transport. (In the table, the diagonals give common symbols for the quantities, and the given dimensionless number is the ratio of the left column quantity over top row quantity; e.g. Re = inertial force/viscous force = vd/ν.) These same quantities may alternatively be expressed as ratios of characteristic time, length, or energy scales. Such forms are less commonly used in practice, but can provide insight into particular applications.
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρ v d | Re | Fr | ||
Viscosity | Re −1 | ρ ν, μ | Oh, Ca, La −1 | Ga −1 | |
Surface tension | Oh −1, Ca −1, La | σ | Bo −1 | We −1 | |
Gravity | Fr −1 | Ga | Bo | g | |
Kinetic energy | We | ρ v 2 d |
Droplet formation mostly depends on momentum, viscosity and surface tension. [2] In inkjet printing for example, an ink with a too high Ohnesorge number would not jet properly, and an ink with a too low Ohnesorge number would be jetted with many satellite drops. [3] Not all of the quantity ratios are explicitly named, though each of the unnamed ratios could be expressed as a product of two other named dimensionless numbers.
All numbers are dimensionless quantities. See other article for extensive list of dimensionless quantities. Certain dimensionless quantities of some importance to fluid mechanics are given below:
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
Rheology is the study of the flow of matter, primarily in a fluid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.
A dimensionless quantity is a quantity to which no physical dimension is assigned. Dimensionless quantities are widely used in many fields, such as mathematics, physics, chemistry, engineering, and economics. Dimensionless quantities are distinct from quantities that have associated dimensions, such as time.
In dimensional analysis, the Strouhal number is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind. The Strouhal number is an integral part of the fundamentals of fluid mechanics.
In continuum mechanics, the Péclet number is a class of dimensionless numbers relevant in the study of transport phenomena in a continuum. It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate gradient. In the context of species or mass transfer, the Péclet number is the product of the Reynolds number and the Schmidt number. In the context of the thermal fluids, the thermal Péclet number is equivalent to the product of the Reynolds number and the Prandtl number.
In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.
Osborne Reynolds was an Irish-born British innovator in the understanding of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought improvements in boiler and condenser design. He spent his entire career at what is now the University of Manchester.
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids. Alongside the Bond number, commonly denoted , this term is useful to describe the forces acting on a fluid front in porous or granular media, such as soil. The capillary number is defined as:
In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid around blunt bodies.
There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.
In fluid dynamics and thermodynamics, the Lewis number is a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer. The Lewis number puts the thickness of the thermal boundary layer in relation to the concentration boundary layer. The Lewis number is defined as
In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.
The Ohnesorge number (Oh) is a dimensionless number that relates the viscous forces to inertial and surface tension forces. The number was defined by Wolfgang von Ohnesorge in his 1936 doctoral thesis.
In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity.
In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.
Fluid thread breakup is the process by which a single mass of fluid breaks into several smaller fluid masses. The process is characterized by the elongation of the fluid mass forming thin, thread-like regions between larger nodules of fluid. The thread-like regions continue to thin until they break, forming individual droplets of fluid.
In fluid mechanics, kinematic similarity is described as “the velocity at any point in the model flow is proportional by a constant scale factor to the velocity at the same point in the prototype flow, while it is maintaining the flow’s streamline shape.” Kinematic Similarity is one of the three essential conditions to complete the similarities between a model and a prototype. The kinematic similarity is the similarity of the motion of the fluid. Since motions can be expressed with distance and time, it implies the similarity of lengths and, in addition, a similarity of the time interval. To achieve kinematic similarity in a scaled model, dimensionless numbers in fluid dynamics come into consideration. For example, Reynolds number of the model and the prototype must match. There are other dimensionless numbers that will also come into consideration, such as Womersley number