Markstein number

Last updated

In combustion engineering and explosion studies, the Markstein number (named after George H. Markstein who first proposed the notion in 1951 [1] ) characterizes the effect of local heat release of a propagating flame on variations in the surface topology along the flame and the associated local flame front curvature. There are two dimensionless Markstein numbers: [2] [3] one is the curvature Markstein number and the other is the flow-strain Markstein number. They are defined as:

Contents

where is the curvature Markstein length, is the flow-strain Markstein length and is the characteristic laminar flame thickness. The larger the Markstein length, the greater the effect of curvature on localised burning velocity. George H. Markstein (1911—2011) showed that thermal diffusion stabilized the curved flame front and proposed a relation between the critical wavelength for stability of the flame front, called the Markstein length, and the thermal thickness of the flame. [4] Phenomenological Markstein numbers with respect to the combustion products are obtained by means of the comparison between the measurements of the flame radii as a function of time and the results of the analytical integration of the linear relation between the flame speed and either flame stretch rate or flame curvature. [5] [6] [7] The burning velocity is obtained at zero stretch, and the effect of the flame stretch acting upon it is expressed by a Markstein length. Because both flame curvature and aerodynamic strain contribute to the flame stretch rate, there is a Markstein number associated with each of these components. [8]

Clavin–Williams formula

The Markstein number with respect to the unburnt gas mixture was derived by Paul Clavin and Forman A. Williams in 1982, using activation energy asymptotics. [9] [10] The formula was extended to include temperature dependences on the thermal conductivities by Paul Clavin and Pedro Luis Garcia Ybarra in 1983. [11] The Clavin–Williams formula is given by [3] [12]

where

Here

is the gas expansion ratio defined with density ratio;
is the Zel'dovich number;
is the effective Lewis number of the deficient reactant (either fuel or oxidizer or a combination of both);
is the ratio of density-thermal conductivity product to its value in the unburnt gas;
is the ratio of temperature to its unburnt value, defined such that .

The function , in most cases, is simply given by , where , in which case, we have

In the constant transport coefficient assumption, , in which case, we have

where is the dilogarithm function.

See also

Related Research Articles

In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the more constrained model is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter α and a scale parameter θ
  2. With a shape parameter and a rate parameter

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P. Mathematically, it is defined as

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

<span class="mw-page-title-main">Premixed flame</span>

A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available throughout a homogeneous stoichiometric premixed charge, the combustion process once initiated sustains itself by way of its own heat release. The majority of the chemical transformation in such a combustion process occurs primarily in a thin interfacial region which separates the unburned and the burned gases. The premixed flame interface propagates through the mixture until the entire charge is depleted. The propagation speed of a premixed flame is known as the flame speed which depends on the convection-diffusion-reaction balance within the flame, i.e. on its inner chemical structure. The premixed flame is characterised as laminar or turbulent depending on the velocity distribution in the unburned pre-mixture.

Covariance matrix adaptation evolution strategy (CMA-ES) is a particular kind of strategy for numerical optimization. Evolution strategies (ES) are stochastic, derivative-free methods for numerical optimization of non-linear or non-convex continuous optimization problems. They belong to the class of evolutionary algorithms and evolutionary computation. An evolutionary algorithm is broadly based on the principle of biological evolution, namely the repeated interplay of variation and selection: in each generation (iteration) new individuals are generated by variation of the current parental individuals, usually in a stochastic way. Then, some individuals are selected to become the parents in the next generation based on their fitness or objective function value . Like this, individuals with better and better -values are generated over the generation sequence.

In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry.

The Darrieus–Landau instability or density fingering refers to a instability of chemical fronts propagating into a denser medium, named after Georges Jean Marie Darrieus and Lev Landau. This instability is one of the key instrinsic flame instability that occurs in premixed flames, caused by the density variation due to the thermal expansion of the gas produced by the combustion process. In simple terms, the stability inquires whether a steadily propagating plane sheet with a discontinuous jump in density is stable or not. Yakov Zeldovich notes that Lev Landau generously suggested this problem to him to investigate and Zeldovich however made error in calculations which led Landau himself to complete the work.

In Combustion, G equation is a scalar field equation which describes the instantaneous flame position, introduced by Forman A. Williams in 1985 in the study of premixed turbulent combustion. The equation is derived based on the Level-set method. The equation was first studied by George H. Markstein, in a restrictive form for the burning velocity and not as a level set of a field.

Activation energy asymptotics (AEA), also known as large activation energy asymptotics, is an asymptotic analysis used in the combustion field utilizing the fact that the reaction rate is extremely sensitive to temperature changes due to the large activation energy of the chemical reaction.

In combustion, flame stretch is a quantity which measures the amount of stretch of the flame surface due to curvature and due to the outer velocity field strain. The early concept of flame stretch was introduced by Karlovitz in 1953, although the correct definition was introduced by Forman A. Williams in 1975. George H. Markstein studied flame stretch by treating the flame surface as a hydrodynamic discontinuity. The flame stretch is also discussed by Bernard Lewis and Guenther von Elbe in their book. All these discussions treated flame stretch as an effect of flow velocity gradients. The stretch can be found even if there is no velocity gradient, but due to the flame curvature. So, the definition required a more general formulation and its precise definition is given as the ratio of rate of change of flame surface area to the area itself

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

Schneider flow describes the axisymmetric outer flow induced by a laminar or turbulent jet having a large jet Reynolds number or by a laminar plume with a large Grashof number, in the case where the fluid domain is bounded by a wall. When the jet Reynolds number or the plume Grashof number is large, the full flow field constitutes two regions of different extent: a thin boundary-layer flow that may identified as the jet or as the plume and a slowly moving fluid in the large outer region encompassing the jet or the plume. The Schneider flow describing the latter motion is an exact solution of the Navier-Stokes equations, discovered by Wilhelm Schneider in 1981. The solution was discovered also by A. A. Golubinskii and V. V. Sychev in 1979, however, was never applied to flows entrained by jets. The solution is an extension of Taylor's potential flow solution to arbitrary Reynolds number.

Chandrasekhar–Page equations describe the wave function of the spin-1/2 massive particles, that resulted by seeking a separable solution to the Dirac equation in Kerr metric or Kerr–Newman metric. In 1976, Subrahmanyan Chandrasekhar showed that a separable solution can be obtained from the Dirac equation in Kerr metric. Later, Don Page extended this work to Kerr–Newman metric, that is applicable to charged black holes. In his paper, Page notices that N. Toop also derived his results independently, as informed to him by Chandrasekhar.

In combustion, Michelson–Sivashinsky equation describes the evolution of a premixed flame front, subjected to the Darrieus–Landau instability, in the small heat release approximation. The equation was derived by Gregory Sivashinsky in 1977, who along the Daniel M. Michelson, presented the numerical solutions of the equation in the same year. Let the planar flame front, in a uitable frame of reference be on the -plane, then the evolution of this planar front is described by the amplitude function describing the deviation from the planar shape. The Michelson–Sivashinsky equation, reads as

Clavin–Garcia equation or Clavin–Garcia dispersion relation provides the relation between the growth rate and the wave number of the perturbation superposed on a planar premixed flame, named after Paul Clavin and Pedro Luis Garcia Ybarra, who derived the dispersion relation in 1983. The dispersion relation accounts for Darrieus–Landau instability, Rayleigh–Taylor instability and diffusive–thermal instability and also accounts for the temperature dependence of transport coefficients.

The Matalon–Matkowsky–Clavin–Joulin theory refers to a theoretical hydrodynamic model of a premixed flame with a large-amplitude flame wrinkling, developed independently by Moshe Matalon & Bernard J. Matkowsky and Paul Clavin & Guy Joulin, following the pioneering study by Paul Clavin and Forman A. Williams and by Pierre Pelcé and Paul Clavin. The theory, for the first time, calculated the burning rate of the curved flame that differs from the burning rate of the planar flame due to flame stretch, associated with the flame curvature and the strain imposed on the flame by the flow field.

In combustion, Williams diagram refers to a classification diagram of different turbulent combustion regimes in a plane, having turbulent Reynolds number as the x-axis and turbulent Damköhler number as the y-axis. The diagram is named after Forman A. Williams (1985). The definition of the two non-dimensionaless numbers are

References

  1. Markstein, G. H. (1988). Experimental and theoretical studies of flame-front stability. In Dynamics of curved fronts (pp. 413-423). Academic Press.
  2. Clavin, P., & Graña-Otero, J. C. (2011). Curved and stretched flames: the two Markstein numbers. Journal of fluid mechanics, 686, 187-217.
  3. 1 2 Clavin, Paul, and Geoff Searby. Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars. Cambridge University Press, 2016.
  4. Oran E. S. (2015). "A tribute to Dr. George H. Markstein (1911–2011)". Combustion and Flame. 162 (1): 1–2. Bibcode:2015CoFl..162....1O. doi:10.1016/j.combustflame.2014.07.005.
  5. Karpov V. P.; Lipanikov A. N.; Wolanski P. (1997). "Finding the markstein number using the measurements of expanding spherical laminar flames". Combustion and Flame. 109 (3): 436. Bibcode:1997CoFl..109..436K. doi:10.1016/S0010-2180(96)00166-6.
  6. Chrystie R.S.M.; Burns I.S.; Hult J.; Kaminski C.F. (2008). "On the improvement of two-dimensional curvature computation and its application to turbulent premixed flame correlations". Measurement Science and Technology. 19 (12): 125503. Bibcode:2008MeScT..19l5503C. doi:10.1088/0957-0233/19/12/125503. S2CID   21642877.
  7. Chakraborty N, Cant RS (2005). "Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime". Physics of Fluids. 17 (10): 105105–105105–20. Bibcode:2005PhFl...17j5105C. doi:10.1063/1.2084231.
  8. Haq MZ, Sheppard CG, Woolley R, Greenhalgh DA, Lockett RD (2002). "Wrinkling and curvature of laminar and turbulent premixed flames". Combustion and Flame. 131 (1–2): 1–15. Bibcode:2002CoFl..131....1H. doi:10.1016/S0010-2180(02)00383-8.
  9. Clavin, Paul, and F. A. Williams. "Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity." Journal of fluid mechanics 116 (1982): 251–282.
  10. Clavin, Paul. "Dynamic behavior of premixed flame fronts in laminar and turbulent flows." Progress in Energy and Combustion Science 11.1 (1985): 1–59
  11. Clavin, P., & Garcia, P. (1983). The influence of the temperature dependence of diffusivities on the dynamics. Journal de Mécanique Théorique et Appliquée, 2(2), 245-263.
  12. Bechtold, J. K., & Matalon, M. (2001). The dependence of the Markstein length on stoichiometry. Combustion and flame, 127(1-2), 1906-1913.