Rayleigh number

Last updated

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1] ) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

Contents

The Rayleigh number is defined as the product of the Grashof number (Gr), which describes the relationship between buoyancy and viscosity within a fluid, and the Prandtl number (Pr), which describes the relationship between momentum diffusivity and thermal diffusivity: Ra = Gr × Pr. [4] [3] Hence it may also be viewed as the ratio of buoyancy and viscosity forces multiplied by the ratio of momentum and thermal diffusivities: Ra = B/μ × ν/α. It is closely related to the Nusselt number (Nu). [5]

Derivation

The Rayleigh number describes the behaviour of fluids (such as water or air) when the mass density of the fluid is non-uniform. The mass density differences are usually caused by temperature differences. Typically a fluid expands and becomes less dense as it is heated. Gravity causes denser parts of the fluid to sink, which is called convection. Lord Rayleigh studied [2] the case of Rayleigh-Bénard convection. [6] When the Rayleigh number, Ra, is below a critical value for a fluid, there is no flow and heat transfer is purely by conduction; when it exceeds that value, heat is transferred by natural convection. [3]

When the mass density difference is caused by temperature difference, Ra is, by definition, the ratio of the time scale for diffusive thermal transport to the time scale for convective thermal transport at speed : [4]

This means the Rayleigh number is a type [4] of Péclet number. For a volume of fluid of size in all three dimensions[ clarification needed ] and mass density difference , the force due to gravity is of the order , where is acceleration due to gravity. From the Stokes equation, when the volume of fluid is sinking, viscous drag is of the order , where is the dynamic viscosity of the fluid. When these two forces are equated, the speed . Thus the time scale for transport via flow is . The time scale for thermal diffusion across a distance is , where is the thermal diffusivity. Thus the Rayleigh number Ra is

where we approximated the density difference for a fluid of average mass density , thermal expansion coefficient and a temperature difference across distance .

The Rayleigh number can be written as the product of the Grashof number and the Prandtl number: [4] [3]

Classical definition

For free convection near a vertical wall, the Rayleigh number is defined as:

where:

In the above, the fluid properties Pr, ν, α and β are evaluated at the film temperature, which is defined as:

For a uniform wall heating flux, the modified Rayleigh number is defined as:

where:

Other applications

Solidifying alloys

The Rayleigh number can also be used as a criterion to predict convectional instabilities, such as A-segregates, in the mushy zone of a solidifying alloy. The mushy zone Rayleigh number is defined as:

where:

A-segregates are predicted to form when the Rayleigh number exceeds a certain critical value. This critical value is independent of the composition of the alloy, and this is the main advantage of the Rayleigh number criterion over other criteria for prediction of convectional instabilities, such as Suzuki criterion.

Torabi Rad et al. showed that for steel alloys the critical Rayleigh number is 17. [8] Pickering et al. explored Torabi Rad's criterion, and further verified its effectiveness. Critical Rayleigh numbers for lead–tin and nickel-based super-alloys were also developed. [9]

Porous media

The Rayleigh number above is for convection in a bulk fluid such as air or water, but convection can also occur when the fluid is inside and fills a porous medium, such as porous rock saturated with water. [10] Then the Rayleigh number, sometimes called the Rayleigh-Darcy number, is different. In a bulk fluid, i.e., not in a porous medium, from the Stokes equation, the falling speed of a domain of size of liquid . In porous medium, this expression is replaced by that from Darcy's law , with the permeability of the porous medium. The Rayleigh or Rayleigh-Darcy number is then

This also applies to A-segregates, in the mushy zone of a solidifying alloy. [8]

Geophysical applications

In geophysics, the Rayleigh number is of fundamental importance: it indicates the presence and strength of convection within a fluid body such as the Earth's mantle. The mantle is a solid that behaves as a fluid over geological time scales. The Rayleigh number for the Earth's mantle due to internal heating alone, RaH, is given by:

where:

A Rayleigh number for bottom heating of the mantle from the core, RaT, can also be defined as:

where:

High values for the Earth's mantle indicates that convection within the Earth is vigorous and time-varying, and that convection is responsible for almost all the heat transported from the deep interior to the surface.

See also

Notes

  1. Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability . London: Oxford University Press. p.  10. ISBN   978-0-19-851237-0.
  2. 1 2 Baron Rayleigh (1916). "On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side". London Edinburgh Dublin Phil. Mag. J. Sci. 32 (192): 529–546. doi:10.1080/14786441608635602.
  3. 1 2 3 4 Çengel, Yunus; Turner, Robert; Cimbala, John (2017). Fundamentals of thermal-fluid sciences (Fifth ed.). New York, NY. ISBN   9780078027680. OCLC   929985323.
  4. 1 2 3 4 5 Squires, Todd M.; Quake, Stephen R. (2005-10-06). "Microfluidics: Fluid physics at the nanoliter scale" (PDF). Reviews of Modern Physics. 77 (3): 977–1026. Bibcode:2005RvMP...77..977S. doi:10.1103/RevModPhys.77.977.
  5. 1 2 Çengel, Yunus A. (2002). Heat and Mass Transfer (Second ed.). McGraw-Hill. p. 466.
  6. Ahlers, Guenter; Grossmann, Siegfried; Lohse, Detlef (2009-04-22). "Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection". Reviews of Modern Physics. 81 (2): 503–537. arXiv: 0811.0471 . Bibcode:2009RvMP...81..503A. doi:10.1103/RevModPhys.81.503. S2CID   7566961.
  7. M. Favre-Marinet and S. Tardu, Convective Heat Transfer, ISTE, Ltd, London, 2009
  8. 1 2 3 Torabi Rad, M.; Kotas, P.; Beckermann, C. (2013). "Rayleigh number criterion for formation of A-Segregates in steel castings and ingots". Metall. Mater. Trans. A. 44A (9): 4266–4281. Bibcode:2013MMTA...44.4266R. doi:10.1007/s11661-013-1761-4. S2CID   137652216.
  9. Pickering, E.J.; Al-Bermani, S.; Talamantes-Silva, J. (2014). "Application of criterion for A-segregation in steel ingots". Materials Science and Technology. 31 (11): 1313. Bibcode:2015MatST..31.1313P. doi:10.1179/1743284714Y.0000000692. S2CID   137549220.
  10. Lister, John R.; Neufeld, Jerome A.; Hewitt, Duncan R. (2014). "High Rayleigh number convection in a three-dimensional porous medium". Journal of Fluid Mechanics. 748: 879–895. arXiv: 0811.0471 . Bibcode:2014JFM...748..879H. doi:10.1017/jfm.2014.216. ISSN   1469-7645. S2CID   43758157.
  11. 1 2 Bunge, Hans-Peter; Richards, Mark A.; Baumgardner, John R. (1997). "A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and endothermic phase change". Journal of Geophysical Research . 102 (B6): 11991–12007. Bibcode:1997JGR...10211991B. doi: 10.1029/96JB03806 .

Related Research Articles

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

The Hagen number (Hg) is a dimensionless number used in forced flow calculations. It is the forced flow equivalent of the Grashof number and was named after the German hydraulic engineer G. H. L. Hagen.

There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span>

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity. It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate given by

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

<span class="mw-page-title-main">Double diffusive convection</span> Convection with two density gradients

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib produced the earliest set of trigonometric tables that exist.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary Layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

In fluid dynamics, stagnation point flow represents the flow of a fluid in the immediate neighborhood of a stagnation point with which the stagnation point is identified for a potential flow or inviscid flow. The flow specifically considers a class of stagnation points known as saddle points where the incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

References