In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1] ) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.
The Rayleigh number is defined as the product of the Grashof number (Gr), which describes the relationship between buoyancy and viscosity within a fluid, and the Prandtl number (Pr), which describes the relationship between momentum diffusivity and thermal diffusivity: Ra = Gr × Pr. [4] [3] Hence it may also be viewed as the ratio of buoyancy and viscosity forces multiplied by the ratio of momentum and thermal diffusivities: Ra = B/μ × ν/α. It is closely related to the Nusselt number (Nu). [5]
The Rayleigh number describes the behaviour of fluids (such as water or air) when the mass density of the fluid is non-uniform. The mass density differences are usually caused by temperature differences. Typically a fluid expands and becomes less dense as it is heated. Gravity causes denser parts of the fluid to sink, which is called convection. Lord Rayleigh studied [2] the case of Rayleigh-Bénard convection. [6] When the Rayleigh number, Ra, is below a critical value for a fluid, there is no flow and heat transfer is purely by conduction; when it exceeds that value, heat is transferred by natural convection. [3]
When the mass density difference is caused by temperature difference, Ra is, by definition, the ratio of the time scale for diffusive thermal transport to the time scale for convective thermal transport at speed : [4]
This means the Rayleigh number is a type [4] of Péclet number. For a volume of fluid of size in all three dimensions[ clarification needed ] and mass density difference , the force due to gravity is of the order , where is acceleration due to gravity. From the Stokes equation, when the volume of fluid is sinking, viscous drag is of the order , where is the dynamic viscosity of the fluid. When these two forces are equated, the speed . Thus the time scale for transport via flow is . The time scale for thermal diffusion across a distance is , where is the thermal diffusivity. Thus the Rayleigh number Ra is
where we approximated the density difference for a fluid of average mass density , thermal expansion coefficient and a temperature difference across distance .
The Rayleigh number can be written as the product of the Grashof number and the Prandtl number: [4] [3]
For free convection near a vertical wall, the Rayleigh number is defined as:
where:
In the above, the fluid properties Pr, ν, α and β are evaluated at the film temperature, which is defined as:
For a uniform wall heating flux, the modified Rayleigh number is defined as:
where:
The Rayleigh number can also be used as a criterion to predict convectional instabilities, such as A-segregates, in the mushy zone of a solidifying alloy. The mushy zone Rayleigh number is defined as:
where:
A-segregates are predicted to form when the Rayleigh number exceeds a certain critical value. This critical value is independent of the composition of the alloy, and this is the main advantage of the Rayleigh number criterion over other criteria for prediction of convectional instabilities, such as Suzuki criterion.
Torabi Rad et al. showed that for steel alloys the critical Rayleigh number is 17. [8] Pickering et al. explored Torabi Rad's criterion, and further verified its effectiveness. Critical Rayleigh numbers for lead–tin and nickel-based super-alloys were also developed. [9]
The Rayleigh number above is for convection in a bulk fluid such as air or water, but convection can also occur when the fluid is inside and fills a porous medium, such as porous rock saturated with water. [10] Then the Rayleigh number, sometimes called the Rayleigh-Darcy number, is different. In a bulk fluid, i.e., not in a porous medium, from the Stokes equation, the falling speed of a domain of size of liquid . In porous medium, this expression is replaced by that from Darcy's law , with the permeability of the porous medium. The Rayleigh or Rayleigh-Darcy number is then
This also applies to A-segregates, in the mushy zone of a solidifying alloy. [8]
In geophysics, the Rayleigh number is of fundamental importance: it indicates the presence and strength of convection within a fluid body such as the Earth's mantle. The mantle is a solid that behaves as a fluid over geological time scales. The Rayleigh number for the Earth's mantle due to internal heating alone, RaH, is given by:
where:
A Rayleigh number for bottom heating of the mantle from the core, RaT, can also be defined as:
where:
High values for the Earth's mantle indicates that convection within the Earth is vigorous and time-varying, and that convection is responsible for almost all the heat transported from the deep interior to the surface.
{{cite book}}
: CS1 maint: location missing publisher (link)Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.
The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:
In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
The Hagen number (Hg) is a dimensionless number used in forced flow calculations. It is the forced flow equivalent of the Grashof number and was named after the German hydraulic engineer G. H. L. Hagen.
There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.
The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.
In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
An Ubbelohde type viscometer or suspended-level viscometer is a measuring instrument which uses a capillary based method of measuring viscosity. It is recommended for higher viscosity cellulosic polymer solutions. The advantage of this instrument is that the values obtained are independent of the total volume. The device was developed by the German chemist Leo Ubbelohde (1877-1964).
Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.
Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.
The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.
In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.
In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point or a stagnation line with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of stagnation points known as saddle points wherein incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.
The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are: