Strouhal number

Last updated

In dimensional analysis, the Strouhal number (St, or sometimes Sr to avoid the conflict with the Stanton number) is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind. [1] [2] The Strouhal number is an integral part of the fundamentals of fluid mechanics.

Contents

The Strouhal number is often given as

where f is the frequency of vortex shedding, L is the characteristic length (for example, hydraulic diameter or the airfoil thickness) and U is the flow velocity. In certain cases, like heaving (plunging) flight, this characteristic length is the amplitude of oscillation. This selection of characteristic length can be used to present a distinction between Strouhal number and reduced frequency:

where k is the reduced frequency, and A is amplitude of the heaving oscillation.

Strouhal number (Sr) as a function of the Reynolds number (R) for a long circular cylinder. Srrrpd.png
Strouhal number (Sr) as a function of the Reynolds number (R) for a long circular cylinder.

For large Strouhal numbers (order of 1), viscosity dominates fluid flow, resulting in a collective oscillating movement of the fluid "plug". For low Strouhal numbers (order of 10−4 and below), the high-speed, quasi-steady-state portion of the movement dominates the oscillation. Oscillation at intermediate Strouhal numbers is characterized by the buildup and rapidly subsequent shedding of vortices. [3]

For spheres in uniform flow in the Reynolds number range of 8×102 < Re < 2×105 there co-exist two values of the Strouhal number. The lower frequency is attributed to the large-scale instability of the wake, is independent of the Reynolds number Re and is approximately equal to 0.2. The higher-frequency Strouhal number is caused by small-scale instabilities from the separation of the shear layer. [4] [5]

Derivation

Knowing Newton’s Second Law stating force is equivalent to mass times acceleration, or , and that acceleration is the derivative of velocity, or (characteristic speed/time) in the case of fluid mechanics, we see

,

Since characteristic speed can be represented as length per unit time, , we get

,

where,

m = mass,
U = characteristic speed,
L = characteristic length.

Dividing both sides by , we get

,

where,

m = mass,
U = characteristic speed,
F = net external forces,
L = characteristic length.

This provides a dimensionless basis for a relationship between mass, characteristic speed, net external forces, and length (size) which can be used to analyze the effects of fluid mechanics on a body with mass.

If the net external forces are predominantly elastic, we can use Hooke’s Law to see

,

where,

k = spring constant (stiffness of elastic element),
ΔL = deformation (change in length).

Assuming , then . With the natural resonant frequency of the elastic system, , being equal to , we get

,

where,

m = mass,
U = characteristic speed,
= natural resonant frequency,
ΔL = deformation (change in length).

Given that cyclic motion frequency can be represented by we get,

,

where,

f = frequency,
L = characteristic length,
U = characteristic speed.

Applications

Micro/Nanorobotics

In the field of micro and nanorobotics, the Strouhal number is used alongside the Reynolds number in analyzing the impact of an external oscillatory fluidic flow on the body of a microrobot. When considering a microrobot with cyclic motion, the Strouhal number can be evaluated as

,

where,

f = cyclic motion frequency,
L = characteristic length of robot,
U = characteristic speed.

The analysis of a microrobot using the Strouhal number allows one to assess the impact that the motion of the fluid it is in has on its motion in relation to the inertial forces acting on the robot–regardless of the dominant forces being elastic or not. [6]

Medical

In the medical field, microrobots that use swimming motions to move may make micromanipulations in unreachable environments.

The equation used for a blood vessel: [7]

,

where,

f = oscillation frequency of the microbot swimming motion
D = blood vessel diameter
V = unsteady viscoelastic flow

The Strouhal number is used as a ratio of the Deborah number (De) and Weissenberg number (Wi): [7]

.

The Strouhal number may also be used to obtain the Womersley number (Wo). The case for blood flow can be categorized as an unsteady viscoelastic flow, therefore the Womersley number is [7]

,

Or considering both equations,

.

Metrology

In metrology, specifically axial-flow turbine meters, the Strouhal number is used in combination with the Roshko number to give a correlation between flow rate and frequency. The advantage of this method over the frequency/viscosity versus K-factor method is that it takes into account temperature effects on the meter.

where,

f = meter frequency,
U = flow rate,
C = linear coefficient of expansion for the meter housing material.

This relationship leaves Strouhal dimensionless, although a dimensionless approximation is often used for C3, resulting in units of pulses/volume (same as K-factor).

This relationship between flow and frequency can also be found in the aeronautical field. Considering pulsating methane-air coflow jet diffusion flames, we get

,

where,

a = fuel jet radius
w = the modulation frequency
U = exit velocity of the fuel jet

For a small Strouhal number (St=0.1) the modulation forms a deviation in the flow that travels very far downstream. As the Strouhal number grows, the non-dimensional frequency approaches the natural frequency of a flickering flame, and eventually will have greater pulsation than the flame. [8]


Animal locomotion

In swimming or flying animals, Strouhal number is defined as

where,

f = oscillation frequency (tail-beat, wing-flapping, etc.),
U = flow rate,
A = peak-to-peak oscillation amplitude.

In animal flight or swimming, propulsive efficiency is high over a narrow range of Strouhal constants, generally peaking in the 0.2 < St < 0.4 range. [9] This range is used in the swimming of dolphins, sharks, and bony fish, and in the cruising flight of birds, bats and insects. [9] However, in other forms of flight other values are found. [9] Intuitively the ratio measures the steepness of the strokes, viewed from the side (e.g., assuming movement through a stationary fluid) – f is the stroke frequency, A is the amplitude, so the numerator fA is half the vertical speed of the wing tip, while the denominator V is the horizontal speed. Thus the graph of the wing tip forms an approximate sinusoid with aspect (maximal slope) twice the Strouhal constant. [10]

Efficient motion

The Strouhal number is most commonly used for assessing oscillating flow as a result of an object's motion through a fluid. The Strouhal number reflects the difficulty for animals to travel efficiently through a fluid with their cyclic propelling motions. The number relates to propulsive efficiency, which peaks between 70%–80% when within the optimal Strouhal number range of 0.2 to 0.4. Through the use of factors such as the stroke frequency, the amplitude of each stroke, and velocity, the Strouhal number is able to analyze the efficiency and impact of an animal's propulsive forces through a fluid, such as those from swimming or flying. For instance, the value represents the constraints to achieve greater propulsive efficiency, which affects motion when cruising and aerodynamic forces when hovering. [11]

Greater reactive forces and properties that act against the object, such as viscosity and density, reduce the ability of an animal's motion to fall within the ideal Strouhal number range when swimming. Through the assessment of different species that fly or swim, it was found that the motion of many species of birds and fish falls within the optimal Strouhal range. [11] However, the Strouhal number varies more within the same species than other species based on the method of how they move in a constrained manner in response to aerodynamic forces. [11]

Example: Alcid

The Strouhal number has significant importance in analyzing the flight of animals since it is based on the streamlines and the animal's velocity as it travels through the fluid. Its significance is demonstrated through the motion of alcids as it passes through different mediums (air to water). The assessment of alcids determined the peculiarity of being able to fly under the efficient Strouhal number range in air and water despite a high mass relative to their wing area. [12] The alcid’s efficient dual-medium motion developed through natural selection where the environment played a role in the evolution of animals over time to fall under a certain efficient range. The dual-medium motion demonstrates how alcids had two different flight patterns based on the stroke velocities as it moved through each fluid. [12] However, as the bird travels through a different medium, it has to face the influence of the fluid’s density and viscosity. Furthermore, the alcid also has to resist the upward-acting buoyancy as it moves horizontally.

Scaling of the Strouhal number

Scale Analysis

In order to determine significance of the Strouhal number at varying scales, one may perform scale analysis–a simplification method to analyze the impact of factors as they change with respect to some scale. When considered in the context of microrobotics and nanorobotics, size is the factor of interest when performing scale analysis.

Scale analysis of the Strouhal number allows for analysis of the relationship between mass and inertial forces as both change with respect to size. Taking its original underived form, , we can then relate each term to size and see how the ratio changes as size changes.

Given where m is mass, V is volume, and is density, we can see mass is directly related to size as volume scales with length (L). Taking the volume to be , we can directly relate mass and size as

.

Characteristic speed (U) is in terms of , and relative distance scales with size, therefore

.

The net external forces (F) scales in relation to mass and acceleration, given by . Acceleration is in terms of , therefore . The mass-size relationship was established to be , so considering all three relationships, we get

.

Length (L) already denotes size and remains L.

Taking all of this together, we get

.

With the Strouhal number relating the mass to inertial forces, this can be expected as these two factors will scale proportionately with size and neither will increase nor decrease in significance with respect to their contribution to the body’s behavior in the cyclic motion of the fluid.

Relationship with the Richardson number

The scaling relationship between the Richardson number and the Strouhal number is represented by the equation: [13]

,

where a and b are constants depending on the condition.

For round helium buoyant jets and plumes: [13]

.

When ,

.

When ,

.

For planar buoyant jets and plumes: [13]

.

For shape-independent scaling: [13]

Relationship with Reynolds number

The Strouhal number and Reynolds number must be considered when addressing the ideal method to develop a body made to move through a fluid. Furthermore, the relationship for these values is expressed through Lighthill's elongated-body theory, which relates the reactive forces experienced by a body moving through a fluid with its inertial forces. [14] The Strouhal number was determined to depend upon the dimensionless Lighthill number, which in turn relates to the Reynolds number. The value of the Strouhal number can then be seen to decrease with an increasing Reynolds number, and to increase with an increasing Lighthill number. [14]

See also

Related Research Articles

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is:

<span class="mw-page-title-main">Drag coefficient</span> Dimensionless parameter to quantify fluid resistance

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid around blunt bodies.

<span class="mw-page-title-main">Vortex shedding</span> Oscillating flow effect resulting from fluid passing over a blunt body

In fluid dynamics, vortex shedding is an oscillating flow that takes place when a fluid such as air or water flows past a bluff body at certain velocities, depending on the size and shape of the body. In this flow, vortices are created at the back of the body and detach periodically from either side of the body forming a Kármán vortex street. The fluid flow past the object creates alternating low-pressure vortices on the downstream side of the object. The object will tend to move toward the low-pressure zone.

In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously. For simplicity this can be modeled as some volume of fluid moving with the object, though in reality "all" the fluid will be accelerated, to various degrees.

<span class="mw-page-title-main">Stokes number</span> Dimensionless number characterising the behavior of particles suspended in a fluid flow

The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number characterising the behavior of particles suspended in a fluid flow. The Stokes number is defined as the ratio of the characteristic time of a particle to a characteristic time of the flow or of an obstacle, or

The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). It is used to characterize heat transfer in forced convection flows.

The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0. The inverse of the Euler number is referred to as the Ruark Number with the symbol Ru.

<span class="mw-page-title-main">Conductor gallop</span> High-amplitude, low-frequency oscillation of overhead power lines due to wind

Conductor gallop is the high-amplitude, low-frequency oscillation of overhead power lines due to wind. The movement of the wires occurs most commonly in the vertical plane, although horizontal or rotational motion is also possible. The natural frequency mode tends to be around 1 Hz, leading the often graceful periodic motion to also be known as conductor dancing. The oscillations can exhibit amplitudes in excess of a metre, and the displacement is sometimes sufficient for the phase conductors to infringe operating clearances, and causing flashover. The forceful motion also adds significantly to the loading stress on insulators and electricity pylons, raising the risk of mechanical failure of either.

The Womersley number is a dimensionless number in biofluid mechanics and biofluid dynamics. It is a dimensionless expression of the pulsatile flow frequency in relation to viscous effects. It is named after John R. Womersley (1907–1958) for his work with blood flow in arteries. The Womersley number is important in keeping dynamic similarity when scaling an experiment. An example of this is scaling up the vascular system for experimental study. The Womersley number is also important in determining the thickness of the boundary layer to see if entrance effects can be ignored.

In fluid mechanics, the Roshko number (Ro) is a dimensionless number describing oscillating flow mechanisms. It is named after the American Professor of Aeronautics Anatol Roshko. It is defined as

<span class="mw-page-title-main">Keulegan–Carpenter number</span> Dimensionless quantity used in fluid dynamics

In fluid dynamics, the Keulegan–Carpenter number, also called the period number, is a dimensionless quantity describing the relative importance of the drag forces over inertia forces for bluff objects in an oscillatory fluid flow. Or similarly, for objects that oscillate in a fluid at rest. For small Keulegan–Carpenter number inertia dominates, while for large numbers the (turbulence) drag forces are important.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

<span class="mw-page-title-main">Scallop theorem</span>

In physics, the scallop theorem states that a swimmer that performs a reciprocal motion cannot achieve net displacement in a low-Reynolds number Newtonian fluid environment, i.e. a fluid that is highly viscous. Such a swimmer deforms its body into a particular shape through a sequence of motions and then reverts to the original shape by going through the sequence in reverse. It does not matter how fast or slow the swimmer executes the sequence. At low Reynolds number, time or inertia does not come into play, and the swimming motion is purely determined by the sequence of shapes that the swimmer assumes.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

Monin–Obukhov (M–O) similarity theory describes the non-dimensionalized mean flow and mean temperature in the surface layer under non-neutral conditions as a function of the dimensionless height parameter, named after Russian scientists A. S. Monin and A. M. Obukhov. Similarity theory is an empirical method that describes universal relationships between non-dimensionalized variables of fluids based on the Buckingham π theorem. Similarity theory is extensively used in boundary layer meteorology since relations in turbulent processes are not always resolvable from first principles.

A whistle is a device that makes sound from air blown from one end forced through a small opening at the opposite end. They are shaped in a way that allows air to oscillate inside of a chamber in an unstable way. The physical theory of the sound-making process is an example of the application of fluid dynamics or hydrodynamics and aerodynamics. The principles relevant to whistle operation also have applications in other areas, such as fluid flow measurement.

References

  1. Strouhal, V. (1878) "Ueber eine besondere Art der Tonerregung" (On an unusual sort of sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216–251.
  2. White, Frank M. (1999). Fluid Mechanics (4th ed.). McGraw Hill. ISBN   978-0-07-116848-9.
  3. Sobey, Ian J. (1982). "Oscillatory flows at intermediate Strouhal number in asymmetry channels". Journal of Fluid Mechanics . 125: 359–373. Bibcode:1982JFM...125..359S. doi:10.1017/S0022112082003371. S2CID   122167909.
  4. Kim, K. J.; Durbin, P. A. (1988). "Observations of the frequencies in a sphere wake and drag increase by acoustic excitation". Physics of Fluids . 31 (11): 3260–3265. Bibcode:1988PhFl...31.3260K. doi: 10.1063/1.866937 .
  5. Sakamoto, H.; Haniu, H. (1990). "A study on vortex shedding from spheres in uniform flow". Journal of Fluids Engineering. 112 (December): 386–392. Bibcode:1990ATJFE.112..386S. doi:10.1115/1.2909415. S2CID   15578514.
  6. Sitti, Metin (2017). Mobile Microrobotics. The MIT Press. pp. 13–24. ISBN   9780262036436.
  7. 1 2 3 Doutel, E.; Galindo-Rosales, F. J.; Campo-Deaño, L. (December 2, 2021). "Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs". Materials. 14 (23): 7402. Bibcode:2021Mate...14.7402D. doi: 10.3390/ma14237402 . PMC   8658690 . PMID   34885556.
  8. Sanchez-Sanz, M.; Liñan, A.; Smoke, M. D.; Bennett, B. A. V. (July 16, 2009). "Influence of Strouhal number on pulsating methane–air coflow jet diffusion flames". Combustion Theory and Modelling. 14 (3): 453–478. doi:10.1080/13647830.2010.490048. S2CID   53640323.
  9. 1 2 3 Taylor, Graham K.; Nudds, Robert L.; Thomas, Adrian L. R. (2003). "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency". Nature. 425 (6959): 707–711. Bibcode:2003Natur.425..707T. doi:10.1038/nature02000. PMID   14562101. S2CID   4431906.
  10. Corum, Jonathan (2003). "The Strouhal Number in Cruising Flight" . Retrieved 2012-11-13– depiction of Strouhal number for flying and swimming animals{{cite web}}: CS1 maint: postscript (link)
  11. 1 2 3 Taylor, G. K.; Nudds, R. L.; Thomas, A. L. R. (October 16, 2003). "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency". Nature. 425 (6959): 707–711. Bibcode:2003Natur.425..707T. doi:10.1038/nature02000. PMID   14562101. S2CID   4431906. ProQuest   204520869.
  12. 1 2 Lapsansky, Anthony B.; Zatz, Daniel; Tobalske, Bret W. (June 30, 2020). "Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle". eLife. 9. doi: 10.7554/eLife.55774 . PMC   7332295 . PMID   32602463.
  13. 1 2 3 4 Wimer, N. T.; Lapointe, C.; Christopher, J. D.; Nigam, S. P.; Hayden, T. R. S.; Upadhye, A.; Strobel, M.; Rieker, G. B.; Hamlington, P. E. (May 21, 2020). "Scaling of the Puffing Strouhal Number for Buoyant Jets and Plumes". Journal of Fluid Mechanics. 895. arXiv: 1904.01580 . Bibcode:2020JFM...895A..26W. doi:10.1017/jfm.2020.271. S2CID   96428731.
  14. 1 2 Eloy, Cristophe (March 5, 2012). "Optimal Strouhal number for swimming animals". Journal of Fluids and Structures. 30: 205–218. arXiv: 1102.0223 . Bibcode:2012JFS....30..205E. doi:10.1016/j.jfluidstructs.2012.02.008. S2CID   56221298.