The hydraulic diameter, DH, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2]
where
More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius RH, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon by shear stress from the fluid. [3]
Note that for the case of a circular pipe,
The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number, which prefers a single variable for flow analysis rather than the set of variables as listed in the table below. The Manning formula contains a quantity called the hydraulic radius. Despite what the name may suggest, the hydraulic diameter is not twice the hydraulic radius, but four times larger.
Hydraulic diameter is mainly used for calculations involving turbulent flow. Secondary flows can be observed in non-circular ducts as a result of turbulent shear stress in the turbulent flow. Hydraulic diameter is also used in calculation of heat transfer in internal-flow problems. [4]
In the more general case, channels with non-uniform non-circular cross-sectional area, such as the Tesla valve, the hydraulic diameter is defined as: [5]
where
This definition is reduced to for uniform non-circular cross-section channels, and for circular pipes.
Geometry | Hydraulic diameter | Comment |
---|---|---|
Circular tube | For a circular tube the hydraulic diameter is simply the diameter of the tube. | |
Annulus | ||
Square duct | here a represents the length of a side, not the cross sectional area | |
Rectangular duct (fully filled). The duct is closed so that the wetted perimeter consists of the 4 sides of the duct. | For the limiting case of a very wide duct, i.e. a slot of width b, where b ≫ a, then DH = 2a. | |
Channel of water or partially filled rectangular duct. Open from top by definition so that the wetted perimeter consists of the 3 sides of the duct (2 on the side and the base). | For the limiting case of a very wide duct, i.e. a slot of width b, where b ≫ a, and a is the water depth, then DH = 4a. |
For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The -sided regular polygon is a union of triangles, each of height and base . Each such triangle contributes to the total area and to the total perimeter, giving
for the hydraulic diameter.
Laminar flow is the property of fluid particles in fluid dynamics to follow smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another smoothly. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.
In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation.
In physics, shear rate is the rate at which a progressive shear strain is applied to some material, causing shearing to the material. Shear rate is a measure of how the velocity changes with distance.
The Manning formula or Manning's equation is an empirical formula estimating the average velocity of a liquid in an open channel flow. However, this equation is also used for calculation of flow variables in case of flow in partially full conduits, as they also possess a free surface like that of open channel flow. All flow in so-called open channels is driven by gravity.
The Fanning friction factor, named after John Thomas Fanning, is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density:
In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube, resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and industrial purposes. It is also observed in natural phenomena.
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness. The SI unit for torsion constant is m4.
In fluid dynamics, friction loss is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.
The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow.
In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.
The Chézy Formula is a semi-empirical resistance equation which estimates mean flow velocity in open channel conduits. The relationship was conceptualized and developed in 1768 by French physicist and engineer Antoine de Chézy (1718–1798) while designing Paris's water canal system. Chézy discovered a similarity parameter that could be used for estimating flow characteristics in one channel based on the measurements of another. The Chézy formula is a pioneering formula in the field of fluid mechanics that relates the flow of water through an open channel with the channel's dimensions and slope. It was expanded and modified by Irish engineer Robert Manning in 1889. Manning's modifications to the Chézy formula allowed the entire similarity parameter to be calculated by channel characteristics rather than by experimental measurements. Today, the Chézy and Manning equations continue to accurately estimate open channel fluid flow and are standard formulas in various fields related to fluid mechanics and hydraulics, including physics, mechanical engineering, and civil engineering.
The depth–slope product is used to calculate the shear stress at the bed of an open channel containing fluid that is undergoing steady, uniform flow. It is widely used in river engineering, stream restoration, sedimentology, and fluvial geomorphology. It is the product of the water depth and the mean bed slope, along with the acceleration due to gravity and density of the fluid.
In biophysical fluid dynamics, Murray's law is a potential relationship between radii at junctions in a network of fluid-carrying tubular pipes. Its simplest version proposes that whenever a branch of radius splits into two branches of radii and , then the three radii should obey the equation If network flow is smooth and leak-free, then systems that obey Murray's law minimize the resistance to flow through the network. For turbulent networks, the law takes the same form but with a different characteristic exponent α.
Concentric Tube Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. They create a temperature driving force by passing fluid streams of different temperatures parallel to each other, separated by a physical boundary in the form of a pipe. This induces forced convection, transferring heat to/from the product.
In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer. When the boundary layer expands to fill the entire pipe, the developing flow becomes a fully developed flow, where flow characteristics no longer change with increased distance along the pipe. Many different entrance lengths exist to describe a variety of flow conditions. Hydrodynamic entrance length describes the formation of a velocity profile caused by viscous forces propagating from the pipe wall. Thermal entrance length describes the formation of a temperature profile. Awareness of entrance length may be necessary for the effective placement of instrumentation, such as fluid flow meters.
In fluid mechanics, flows in closed conduits are usually encountered in places such as drains and sewers where the liquid flows continuously in the closed channel and the channel is filled only up to a certain depth. Typical examples of such flows are flow in circular and Δ shaped channels.