Equivalent spherical diameter

Last updated

The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation. [1] [2] [3]

Contents

The particle size of a perfectly smooth, spherical object can be accurately defined by a single parameter, the particle diameter. However, real-life particles are likely to have irregular shapes and surface irregularities, and their size cannot be fully characterized by a single parameter.

The concept of equivalent spherical diameter has been introduced in the field of particle size analysis to enable the representation of the particle size distribution in a simplified, homogenized way. Here, the real-life particle is matched with an imaginary sphere which has the same properties according to a defined principle, enabling the real-life particle to be defined by the diameter of the imaginary sphere.  

The principle used to match the real-life particle and the imaginary sphere vary as a function of the measurement technique used to measure the particle.

Optical methods

For optical-based particle sizing methods such as microscopy or dynamic image analysis, the analysis is made on the projection of the three-dimensional object on a two-dimensional plane. The most commonly used methods for determining the equivalent spherical diameter from the particle’s projected outline are:

Since the particle’s orientation at the time of image capture has a large influence on all these parameters, the equivalent spherical diameter is obtained by averaging a large number of measurements, corresponding to the different particle orientations.

Of note, the ISO standards providing guidance for performing particle size determination by static and dynamic image analysis (respectively ISO 13322-1 and 13322-2) [4] [5] recommend to define particle size by a combination of 3 primary measurements, namely the area-equivalent diameter, the maximum Feret diameter, and the minimum Feret diameter. The combination of these parameters is then used to define the shape factor.

Sieving

Equivalent spherical diameter for the sieve method Schematic representation of sieve method.png
Equivalent spherical diameter for the sieve method

In sieve analysis, the particle size distribution of a granular material is assessed by letting the material pass through a series of sieves of progressively smaller mesh size. In that case the equivalent spherical diameter corresponds to the equivalent sieve diameter, or the diameter of a sphere that just passes through a defined sieve pore.

Of note, the equivalent sieve diameter can be significantly smaller than the area-equivalent diameter obtained by optical methods, as particles can pass the sieve apertures in an orientation corresponding to their smallest projection surface.

Laser diffraction

Laser diffraction analysis is based on the observation that the angle of the light diffracted by a particle is inversely proportional to its size.

Strictly speaking, the laser diffraction equivalent diameter is the diameter of a sphere yielding, on the same detector geometry, the same diffraction pattern as the particle. In the size regimen where the Fraunhofer approximation is valid, this diameter corresponds to the projected area diameter of the particle in random orientation.  For particles  ≤ 0.1 µm, the definition can be extended into volume-equivalent diameter. In this case, the cross-sectional area becomes nearly the same as that of a sphere with equal volume. [6] In addition, the favored mean particle size for laser diffraction results is the D[4,3] or De Brouckere mean diameter, which is typically applied to measurement techniques where the measured signal is proportional to the volume of the particles.

Hence, in a simplified way, the laser diffraction equivalent diameter is considered as a volume-equivalent spherical diameter, i.e., the diameter of a sphere of the same volume as that of the particle under investigation.

Dynamic light scattering

Dynamic light scattering is based on the principle that light scattered by small particles (Rayleigh scattering) fluctuates as the particles undergo Brownian motion. The equivalent spherical diameter for the technique is termed hydrodynamic diameter (HDD). This corresponds to the diameter of a sphere with the same translational diffusion coefficient D as the particle, in the same fluid and under the same conditions. The relationship between the diffusion coefficient D and the HDD is  defined by the Stokes–Einstein equation:

where

Sedimentation

Particle size analysis techniques based on gravitational or centrifugal sedimentation (e.g., hydrometer technique used for soil texture [7] ) are based on Stokes’ law, and consist in calculating the size of particles from the speed at which they settle in a liquid.

In that case the equivalent spherical diameter is appropriately termed Stokes diameter, and corresponds to the diameter of a sphere having the same settling rate as the particle under conditions of Stokes’ law.  

also

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

<span class="mw-page-title-main">Scattering</span> Range of physical processes

Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

<span class="mw-page-title-main">Diffraction-limited system</span> Optical system with resolution performance at the instruments theoretical limit

In optics, any optical instrument or system – a microscope, telescope, or camera – has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.

<span class="mw-page-title-main">Selected area diffraction</span>

Selected area (electron) diffraction is a crystallographic experimental technique typically performed using a transmission electron microscope (TEM). It is a specific case of electron diffraction used primarily in material science and solid state physics as one of the most common experimental techniques. Especially with appropriate analytical software, SAD patterns (SADP) can be used to determine crystal orientation, measure lattice constants or examine its defects.

Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method based on Stokes' law. Soil texture has agricultural applications such as determining crop suitability and to predict the response of the soil to environmental and management conditions such as drought or calcium (lime) requirements. Soil texture focuses on the particles that are less than two millimeters in diameter which include sand, silt, and clay. The USDA soil taxonomy and WRB soil classification systems use 12 textural classes whereas the UK-ADAS system uses 11. These classifications are based on the percentages of sand, silt, and clay in the soil.

Nanoparticle tracking analysis (NTA) is a method for visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity and temperature of the liquid; it is not influenced by particle density or refractive index. NTA allows the determination of a size distribution profile of small particles with a diameter of approximately 10-1000 nanometers (nm) in liquid suspension.

A particle counter is used for monitoring and diagnosing particle contamination within specific clean media, including air, water and chemicals. Particle counters are used in a variety of applications in support of clean manufacturing practices, industries include: electronic components and assemblies, pharmaceutical drug products and medical devices, and industrial technologies such as oil and gas.

<span class="mw-page-title-main">Mesh (scale)</span> Measurement of particle size

Mesh is a measurement of particle size often used in determining the particle-size distribution of a granular material. For example, a sample from a truckload of peanuts may be placed atop a mesh with 5 mm openings. When the mesh is shaken, small broken pieces and dust pass through the mesh while whole peanuts are retained on the mesh. A commercial peanut buyer might use a test like this to determine if a batch of peanuts has too many broken pieces. This type of test is common in some industries, and, to facilitate uniform testing methods, several standardized mesh series have been established.

<span class="mw-page-title-main">Dynamic light scattering</span> Technique for determining size distribution of particles

Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function. In the time domain analysis, the autocorrelation function (ACF) usually decays starting from zero delay time, and faster dynamics due to smaller particles lead to faster decorrelation of scattered intensity trace. It has been shown that the intensity ACF is the Fourier transform of the power spectrum, and therefore the DLS measurements can be equally well performed in the spectral domain. DLS can also be used to probe the behavior of complex fluids such as concentrated polymer solutions.

<span class="mw-page-title-main">Sieve analysis</span> Procedure to assess particle size distribution

A sieve analysis is a practice or procedure used in civil engineering and chemical engineering to assess the particle size distribution of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction of the whole mass.

Light scattering by particles is the process by which small particles scatter light causing optical phenomena such as the blue color of the sky, and halos.

<span class="mw-page-title-main">Particle-size distribution</span> Function representing relative sizes of particles in a system

In granulometry, the particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Significant energy is usually required to disintegrate soil, etc. particles into the PSD that is then called a grain size distribution.

<span class="mw-page-title-main">Particle size</span> Notion for comparing dimensions of particles in different states of matter

Particle size is a notion introduced for comparing dimensions of solid particles, liquid particles (droplets), or gaseous particles (bubbles). The notion of particle size applies to particles in colloids, in ecology, in granular material, and to particles that form a granular material.

<span class="mw-page-title-main">Laser beam profiler</span> Measurement device

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power — there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

Particle size analysis, particle size measurement, or simply particle sizing, is the collective name of the technical procedures, or laboratory techniques which determines the size range, and/or the average, or mean size of the particles in a powder or liquid sample.

<span class="mw-page-title-main">Laser diffraction analysis</span> Technology for measuring geometrical dimensions of particle

Laser diffraction analysis, also known as laser diffraction spectroscopy, is a technology that utilizes diffraction patterns of a laser beam passed through any object ranging from nanometers to millimeters in size to quickly measure geometrical dimensions of a particle. This particle size analysis process does not depend on volumetric flow rate, the amount of particles that passes through a surface over time.

<span class="mw-page-title-main">Feret diameter</span> Measure of an objects size along a specified direction

The Feret diameter or Feret's diameter is a measure of an object's size along a specified direction. In general, it can be defined as the distance between the two parallel planes restricting the object perpendicular to that direction. It is therefore also called the caliper diameter, referring to the measurement of the object size with a caliper. This measure is used in the analysis of particle sizes, for example in microscopy, where it is applied to projections of a three-dimensional (3D) object on a 2D plane. In such cases, the Feret diameter is defined as the distance between two parallel tangential lines rather than planes.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

The De Brouckere mean diameter is the mean of a particle size distribution weighted by the volume. It is the mean diameter, which is directly obtained in particle size measurements, where the measured signal is proportional to the volume of the particles. The most prominent examples are laser diffraction and acoustic spectroscopy.

References

  1. Jennings, B. R. and Parslow, K. (1988) Particle Size Measurement: The Equivalent Spherical Diameter. Proceedings of the Royal Society of London. Series A419, 137-149
  2. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " equivalent diameter ". doi : 10.1351/goldbook.E02191
  3. Merkus, Henk G. (2009). Particle size measurements : fundamentals, practice, quality. Dordrecht: Springer. ISBN   978-1-4020-9016-5. OCLC   318545432.
  4. "ISO 13322-1:2014". ISO. Retrieved 2022-10-06.
  5. "ISO 13322-2:2021". ISO. Retrieved 2022-10-06.
  6. "Particle size analysis methods: Dynamic light scattering vs. laser diffraction :: Anton Paar Wiki". Anton Paar. Retrieved 2022-10-06.
  7. "Soil Hydrometer Testing: Sedimentation Method Techniques & Equipment". GlobalGilson.com. Retrieved 2022-10-06.