Vocal tract

Last updated
Vocal tract
Sagittalmouth.png
Sagittal section of human vocal tract
Anatomical terminology

The vocal tract is the cavity in human bodies and in animals where the sound produced at the sound source (larynx in mammals; syrinx in birds) is filtered.

In birds it consists of the trachea, the syrinx, the oral cavity, the upper part of the esophagus, and the beak. In mammals it consists of the laryngeal cavity, the pharynx, the oral cavity, and the nasal cavity.

The estimated average length of the vocal tract in men is 16.9 cm and 14.1 cm in women. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Manner of articulation</span> Configuration and interaction of the articulators when making a speech sound

In articulatory phonetics, the manner of articulation is the configuration and interaction of the articulators when making a speech sound. One parameter of manner is stricture, that is, how closely the speech organs approach one another. Others include those involved in the r-like sounds, and the sibilancy of fricatives.

<span class="mw-page-title-main">Phonetics</span> Study of the sounds of human language

Phonetics is a branch of linguistics that studies how humans produce and perceive sounds, or in the case of sign languages, the equivalent aspects of sign. Linguists who specialize in studying the physical properties of speech are phoneticians. The field of phonetics is traditionally divided into three sub-disciplines based on the research questions involved such as how humans plan and execute movements to produce speech, how various movements affect the properties of the resulting sound, or how humans convert sound waves to linguistic information. Traditionally, the minimal linguistic unit of phonetics is the phone—a speech sound in a language which differs from the phonological unit of phoneme; the phoneme is an abstract categorization of phones, and it is also defined as the smallest unit that discerns meaning between sounds in any given language.

<span class="mw-page-title-main">Human voice</span> Sound made by a human being using the vocal tract

The human voice consists of sound made by a human being using the vocal tract, including talking, singing, laughing, crying, screaming, shouting, humming or yelling. The human voice frequency is specifically a part of human sound production in which the vocal folds are the primary sound source.

<span class="mw-page-title-main">Larynx</span> Voice box, an organ in the neck of amphibians, reptiles, and mammals

The larynx, commonly called the voice box, is an organ in the top of the neck involved in breathing, producing sound and protecting the trachea against food aspiration. The opening of larynx into pharynx known as the laryngeal inlet is about 4–5 centimeters in diameter. The larynx houses the vocal cords, and manipulates pitch and volume, which is essential for phonation. It is situated just below where the tract of the pharynx splits into the trachea and the esophagus. The word 'larynx' comes from the Ancient Greek word lárunx ʻlarynx, gullet, throat.ʼ

<span class="mw-page-title-main">Tongue</span> Muscular organ in the mouth of most vertebrates

The tongue is a muscular organ in the mouth of a typical tetrapod. It manipulates food for chewing and swallowing as part of the digestive process, and is the primary organ of taste. The tongue's upper surface (dorsum) is covered by taste buds housed in numerous lingual papillae. It is sensitive and kept moist by saliva and is richly supplied with nerves and blood vessels. The tongue also serves as a natural means of cleaning the teeth. A major function of the tongue is the enabling of speech in humans and vocalization in other animals.

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals, the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli, and in birds, they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds, the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

The field of articulatory phonetics is a subfield of phonetics that studies articulation and ways that humans produce speech. Articulatory phoneticians explain how humans produce speech sounds via the interaction of different physiological structures. Generally, articulatory phonetics is concerned with the transformation of aerodynamic energy into acoustic energy. Aerodynamic energy refers to the airflow through the vocal tract. Its potential form is air pressure; its kinetic form is the actual dynamic airflow. Acoustic energy is variation in the air pressure that can be represented as sound waves, which are then perceived by the human auditory system as sound.

<span class="mw-page-title-main">Palate</span> Roof of the mouth

The palate is the roof of the mouth in humans and other mammals. It separates the oral cavity from the nasal cavity. A similar structure is found in crocodilians, but in most other tetrapods, the oral and nasal cavities are not truly separated. The palate is divided into two parts, the anterior, bony hard palate and the posterior, fleshy soft palate.

<span class="mw-page-title-main">Soft palate</span> Flexible part of maxilla

The soft palate is, in mammals, the soft tissue constituting the back of the roof of the mouth. The soft palate is part of the palate of the mouth; the other part is the hard palate. The soft palate is distinguished from the hard palate at the front of the mouth in that it does not contain bone.

A body orifice is any opening in the body of an animal.

In phonetics, the airstream mechanism is the method by which airflow is created in the vocal tract. Along with phonation and articulation, it is one of three main components of speech production. The airstream mechanism is mandatory for most sound production and constitutes the first part of this process, which is called initiation.

In phonetics, a continuant is a speech sound produced without a complete closure in the oral cavity. By one definition, continuant is a distinctive feature that refers to any sound produced with an incomplete closure of the vocal tract, thus encompassing all sounds except stops, affricates and nasals. By another definition, it refers exclusively to consonantal sounds produced with an incomplete closure of the oral cavity, prototypically approximants and fricatives, but sometimes also trills.

<span class="mw-page-title-main">Syrinx (bird anatomy)</span> The vocal organ of birds

The syrinx is the vocal organ of birds. Located at the base of a bird's trachea, it produces sounds without the vocal folds of mammals. The sound is produced by vibrations of some or all of the membrana tympaniformis and the pessulus, caused by air flowing through the syrinx. This sets up a self-oscillating system that modulates the airflow creating the sound. The muscles modulate the sound shape by changing the tension of the membranes and the bronchial openings. The syrinx enables some species of birds to mimic human speech.

<span class="mw-page-title-main">Animal song</span>

Animal song is not a well-defined term in scientific literature, and the use of the more broadly defined term vocalizations is in more common use. Song generally consists of several successive vocal sounds incorporating multiple syllables. Some sources distinguish between simpler vocalizations, termed “calls”, reserving the term “song” for more complex productions. Song-like productions have been identified in several groups of animals, including cetaceans, avians (birds), anurans (frogs), and humans. Social transmission of song has been found in groups including birds and cetaceans.

The source–filter model represents speech as a combination of a sound source, such as the vocal cords, and a linear acoustic filter, the vocal tract. While only an approximation, the model is widely used in a number of applications such as speech synthesis and speech analysis because of its relative simplicity. It is also related to linear prediction. The development of the model is due, in large part, to the early work of Gunnar Fant, although others, notably Ken Stevens, have also contributed substantially to the models underlying acoustic analysis of speech and speech synthesis. Fant built off the work of Tsutomu Chiba and Masato Kajiyama, who first showed the relationship between a vowel's acoustic properties and the shape of the vocal tract.

<span class="mw-page-title-main">Kenneth N. Stevens</span> American computer scientist

Kenneth Noble Stevens was the Clarence J. LeBel Professor of Electrical Engineering and Computer Science, and professor of health sciences and technology at the research laboratory of electronics at MIT. Stevens was head of the speech communication group in MIT's research laboratory of electronics (RLE), and was one of the world's leading scientists in acoustic phonetics.

<span class="mw-page-title-main">Mouth</span> First portion of the alimentary canal that receives food

The mouth is the body orifice through which many animals ingest food and vocalize. The body cavity immediately behind the mouth opening, known as the oral cavity, is also the first part of the alimentary canal which leads to the pharynx and the gullet. In tetrapod vertebrates, the mouth is bounded on the outside by the lips and cheeks — thus the oral cavity is also known as the buccal cavity — and contains the tongue on the inside. Except for some groups like birds and lissamphibians, vertebrates usually have teeth in their mouths, although some fish species have pharyngeal teeth instead of oral teeth.

Vocal resonance may be defined as "the process by which the basic product of phonation is enhanced in timbre and/or intensity by the air-filled cavities through which it passes on its way to the outside air." Throughout the vocal literature, various terms related to resonation are used, including: amplification, filtering, enrichment, enlargement, improvement, intensification, and prolongation. Acoustic authorities would question many of these terms from a strictly scientific perspective. However, the main point to be drawn from these terms by a singer or speaker is that the result of resonation is to make a better sound, or at least suitable to a certain esthetical and practical domain.

<span class="mw-page-title-main">Speech repetition</span> Repeating something someone else said

Speech repetition occurs when individuals speak the sounds that they have heard another person pronounce or say. In other words, it is the saying by one individual of the spoken vocalizations made by another individual. Speech repetition requires the person repeating the utterance to have the ability to map the sounds that they hear from the other person's oral pronunciation to similar places and manners of articulation in their own vocal tract.

<span class="mw-page-title-main">Origin of speech</span>

The origin of speech differs from the origin of language because language is not necessarily spoken; it could equally be written or signed. Language is a fundamental aspect of human communication and plays a vital role in the everyday lives of humans. It allows them to convey thoughts, emotions, and ideas, and providing the ability to connect with others and shape collective reality.

References

  1. Goldstein, Ursula Gisela (1980). An articulatory model for the vocal tracts of growing children (Ph.D.). Cambridge, MA: Massachusetts Institute of Technology. hdl:1721.1/22386.