Vorton

Last updated

A vorton is a hypothetical circular cosmic string loop stabilized by the angular momentum of the charge and current trapped on the string. [1]

Related Research Articles

Inflation (cosmology) Theory of rapid universe expansion

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10−36 seconds after the conjectured Big Bang singularity to some time between 10−33 and 10−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old.

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

In Big Bang cosmology the cosmic microwave background is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination when the first atoms were formed. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost uniform, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity.

Positron Subatomic particle

The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 e, a spin of 1/2, and the same mass as an electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

Cosmogony is any model concerning the origin of the cosmos or the universe.

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.

<i>The Elegant Universe</i> 1999 book by Brian Greene

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory is a book by Brian Greene published in 1999, which introduces string and superstring theory, and provides a comprehensive though non-technical assessment of the theory and some of its shortcomings. In 2000, it won the Royal Society Prize for Science Books and was a finalist for the Pulitzer Prize for General Non-Fiction. A new edition was released in 2003, with an updated preface.

Leonard Susskind American physicist

Leonard Susskind is an American physicist, who is a professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

Eva Silverstein is an American theoretical physicist, cosmologist, and string theorist. She is best known for her work on early universe cosmology, developing the structure of inflation and its range of signatures, as well as extensive contributions to string theory and gravitational physics. Her early work included control of tachyon condensation in string theory and resulting resolution of some spacetime singularities. Other significant research contributions include the construction of the first models of dark energy in string theory, some basic extensions of the AdS/CFT correspondence to more realistic field theories, as well as the discovery of a predictive new mechanism for cosmic inflation involving D-brane dynamics which helped motivate more systematic analyses of primordial non-Gaussianity.

Andrei Linde Russian-American theoretical physicist

Andrei Dmitriyevich Linde is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.

In particle physics, the crypton is a hypothetical superheavy particle, thought to exist in a hidden sector of string theory. It has been proposed as a candidate particle to explain the dark matter content of the universe. Cryptons arising in the hidden sector of a superstring-derived flipped SU(5) GUT model have been shown to be metastable with a lifetime exceeding the age of the universe. Their slow decays may provide a source for the ultra-high-energy cosmic rays (UHECR).

A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory.

IceCube Neutrino Observatory Neutrino observatory constructed under the ice at the South Pole

The IceCube Neutrino Observatory is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometre.

Dimitri Nanopoulos Greek physicist

Dimitri V. Nanopoulos is a Greek physicist. He is one of the most regularly cited researchers in the world, cited more than 48,500 times over across a number of separate branches of science.

The non-critical string theory describes the relativistic string without enforcing the critical dimension. Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz invariant background. However, there are recent developments which make possible Lorentz invariant quantization of string theory in 4-dimensional Minkowski space-time.

Renata Kallosh Theoretical physicist

Renata Elizaveta Kallosh is a theoretical physicist. She is a Professor of Physics at Stanford University, working there on supergravity, string theory and inflationary cosmology.

In string theory, a domain wall is a theoretical (d−1)-dimensional singularity. A domain wall is meant to represent an object of codimension one embedded into space. For example, D8-branes are domain walls in type II string theory. In M-theory, the existence of Horava–Witten domain walls, "ends of the world" that carry an E8 gauge theory, is important for various relations between superstring theory and M-theory.

Gary T. Horowitz is an American theoretical physicist who works on string theory and quantum gravity.

References

  1. Davis, R. L.; Shellard, E. P. S. (1989). "Cosmic vortons". Nuclear Physics B . 323 (1): 209–224. Bibcode:1989NuPhB.323..209D. doi:10.1016/0550-3213(89)90594-4.

Further reading