This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2024) |
In the mathematical theory of probability, the voter model is an interacting particle system introduced by Richard A. Holley and Thomas M. Liggett in 1975. [1]
One can imagine that there is a "voter" at each point on a connected graph, where the connections indicate that there is some form of interaction between a pair of voters (nodes). The opinions of any given voter on some issue changes at random times under the influence of opinions of his neighbours. A voter's opinion at any given time can take one of two values, labelled 0 and 1. At random times, a random individual is selected and that voter's opinion is changed according to a stochastic rule. Specifically, one of the chosen voter's neighbors is chosen according to a given set of probabilities and that neighbor’s opinion is transferred to the chosen voter.
An alternative interpretation is in terms of spatial conflict. Suppose two nations control the areas (sets of nodes) labelled 0 or 1. A flip from 0 to 1 at a given location indicates an invasion of that site by the other nation.
Note that only one flip happens each time. Problems involving the voter model will often be recast in terms of the dual system[ clarification needed ] of coalescing[ clarification needed ] Markov chains. Frequently, these problems will then be reduced to others involving independent Markov chains.
A voter model is a (continuous time) Markov process with state space and transition rates function , where is a d-dimensional integer lattice, and •,• is assumed to be nonnegative, uniformly bounded and continuous as a function of in the product topology on . Each component is called a configuration. To make it clear that stands for the value of a site x in configuration ; while means the value of a site x in configuration at time .
The dynamic of the process are specified by the collection of transition rates. For voter models, the rate at which there is a flip at from 0 to 1 or vice versa is given by a function of site . It has the following properties:
Property (1) says that and are fixed points for the evolution. (2) indicates that the evolution is unchanged by interchanging the roles of 0's and 1's. In property (3), means , and implies if , and implies if .
The interest in is the limiting behavior of the models. Since the flip rates of a site depends on its neighbours, it is obvious that when all sites take the same value, the whole system stops changing forever. Therefore, a voter model has two trivial extremal stationary distributions, the point-masses and on or respectively, which represent consensus. The main question to be discussed is whether or not there are others, which would then represent coexistence of different opinions in equilibrium. It is said coexistence occurs if there is a stationary distribution that concentrates on configurations with infinitely many 0's and 1's. On the other hand, if for all and all initial configurations, then
It is said that clustering occurs.
It is important to distinguish clustering with the concept of cluster. Clusters are defined to be the connected components of or .
This section will be dedicated to one of the basic voter models, the Linear Voter Model.
If •,• be the transition probabilities for an irreducible random walk on , then:
Then in Linear voter model, the transition rates are linear functions of :
Or if indicates that a flip happens at , then transition rates are simply:
A process of coalescing random walks is defined as follows. Here denotes the set of sites occupied by these random walks at time . To define , consider several (continuous time) random walks on with unit exponential holding times and transition probabilities •,•, and take them to be independent until two of them meet. At that time, the two that meet coalesce into one particle, which continues to move like a random walk with transition probabilities •,• .
The concept of Duality is essential for analysing the behavior of the voter models. The linear voter models satisfy a very useful form of duality, known as coalescing duality, which is:
where is the initial configuration of and is the initial state of the coalescing random walks .
Let be the transition probabilities for an irreducible random walk on and , then the duality relation for such linear voter models says that
where and are (continuous time) random walks on with , , and is the position taken by the random walk at time . and forms a coalescing random walks described at the end of section 2.1. is a symmetrized random walk. If is recurrent and , and will hit eventually with probability 1, and hence
Therefore, the process clusters.
On the other hand, when , the system coexists. It is because for , is transient, thus there is a positive probability that the random walks never hit, and hence for
for some constant corresponding to the initial distribution.
If be a symmetrized random walk, then there are the following theorems:
Theorem 2.1
The linear voter model clusters if is recurrent, and coexists if is transient. In particular,
Remarks: To contrast this with the behavior of the threshold voter models that will be discussed in next section, note that whether the linear voter model clusters or coexists depends almost exclusively on the dimension of the set of sites, rather than on the size of the range of interaction.
Theorem 2.2 Suppose is any translation spatially ergodic and invariant probability measure on the state space , then
where is the distribution of ; means weak convergence, is a nontrivial extremal invariant measure and .
One of the interesting special cases of the linear voter model, known as the basic linear voter model, is that for state space :
So that
In this case, the process clusters if , while coexists if . This dichotomy is closely related to the fact that simple random walk on is recurrent if and transient if .
For the special case with , and for each . From Theorem 2.2, , thus clustering occurs in this case. The aim of this section is to give a more precise description of this clustering.
As mentioned before, clusters of an are defined to be the connected components of or . The mean cluster size for is defined to be:
provided the limit exists.
Proposition 2.3
Suppose the voter model is with initial distribution and is a translation invariant probability measure, then
Define the occupation time functionals of the basic linear voter model as:
Theorem 2.4
Assume that for all site x and time t, , then as , almost surely if
proof
By Chebyshev's inequality and the Borel–Cantelli lemma, there is the equation below:
The theorem follows when letting .
This section concentrates on a kind of non-linear voter model, known as the threshold voter model. To define it, let be a neighbourhood of that is obtained by intersecting with any compact, convex, symmetric set in ; in other words, is assumed to be a finite set that is symmetric with respect to all reflections and irreducible (i.e. the group it generates is ). It can always be assumed that contains all the unit vectors . For a positive integer , the threshold voter model with neighbourhood and threshold is the one with rate function:
Simply put, the transition rate of site is 1 if the number of sites that do not take the same value is larger or equal to the threshold T. Otherwise, site stays at the current status and will not flip.
For example, if , and , then the configuration is an absorbing state or a trap for the process.
If a threshold voter model does not fixate, the process should be expected to will coexist for small threshold and cluster for large threshold, where large and small are interpreted as being relative to the size of the neighbourhood, . The intuition is that having a small threshold makes it easy for flips to occur, so it is likely that there will be a lot of both 0's and 1's around at all times. The following are three major results:
Here are two theorems corresponding to properties (1) and (2).
Theorem 3.1
If , then the process fixates.
Theorem 3.2
The threshold voter model in one dimension () with , clusters.
proof
The idea of the proof is to construct two sequences of random times , for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \scriptstyle n\geq 1 } with the following properties:
Once this construction is made, it will follow from renewal theory that
Hence,, so that the process clusters.
Remarks: (a) Threshold models in higher dimensions do not necessarily cluster if . For example, take and . If is constant on alternating vertical infinite strips, that is for all :
then no transition ever occur, and the process fixates.
(b) Under the assumption of Theorem 3.2, the process does not fixate. To see this, consider the initial configuration , in which infinitely many zeros are followed by infinitely many ones. Then only the zero and one at the boundary can flip, so that the configuration will always look the same except that the boundary will move like a simple symmetric random walk. The fact that this random walk is recurrent implies that every site flips infinitely often.
Property 3 indicates that the threshold voter model is quite different from the linear voter model, in that coexistence occurs even in one dimension, provided that the neighbourhood is not too small. The threshold model has a drift toward the "local minority", which is not present in the linear case.
Most proofs of coexistence for threshold voter models are based on comparisons with hybrid model known as the threshold contact process with parameter . This is the process on with flip rates:
Proposition 3.3
For any and , if the threshold contact process with has a nontrivial invariant measure, then the threshold voter model coexists.
The case that is of particular interest because it is the only case in which it is known exactly which models coexist and which models cluster.
In particular, there is interest in a kind of Threshold T=1 model with that is given by:
can be interpreted as the radius of the neighbourhood ; determines the size of the neighbourhood (i.e., if , then ; while for , the corresponding ).
By Theorem 3.2, the model with and clusters. The following theorem indicates that for all other choices of and , the model coexists.
Theorem 3.4
Suppose that , but . Then the threshold model on with parameter coexists.
The proof of this theorem is given in a paper named "Coexistence in threshold voter models" by Thomas M. Liggett.
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.
In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.
In mathematics, the Cauchy principal value, named after Augustin-Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the non singular domain.
In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.
In mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair:
In mathematics, a filter on a set is a family of subsets such that:
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
This article is supplemental for “Convergence of random variables” and provides proofs for selected results.
The uncertainty theory invented by Baoding Liu is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.
In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.
Input-to-state stability (ISS) is a stability notion widely used to study stability of nonlinear control systems with external inputs. Roughly speaking, a control system is ISS if it is globally asymptotically stable in the absence of external inputs and if its trajectories are bounded by a function of the size of the input for all sufficiently large times. The importance of ISS is due to the fact that the concept has bridged the gap between input–output and state-space methods, widely used within the control systems community.
Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.
K-convex functions, first introduced by Scarf, are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the policy in inventory control theory. The policy is characterized by two numbers s and S, , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi have generalized the concept of K-convexity to higher dimensional Euclidean spaces.
Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.
ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation. The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads
Tsirelson's stochastic differential equation is a stochastic differential equation which has a weak solution but no strong solution. It is therefore a counter-example and named after its discoverer Boris Tsirelson. Tsirelson's equation is of the form