Water demand management

Last updated

Until relatively recently problems with water supply-demand balance were typically addressed through "supply augmentation", that is to say, building more dams, water treatment stations, etc. As long as water resources were considered abundant and the needs of the natural environment were ignored this reliance on the "engineering paradigm" made sense. [1] Moreover, water utilities and governments have long preferred large capital projects to the less profitable and more difficult challenges of improving system efficiency (e.g. leakage reduction) and demand management. Water demand management came into vogue in the 1990s and 2000s at the same moment dams and similar supply augmentation schemes went out of fashion because they were increasingly seen as overly expensive, damaging to the environment (see Environmental impact of reservoirs), and socially unjust. Now, in the 2020s, it is accurate to say that demand management is the dominant approach in the richer countries of North America and Europe, but is also becoming more popular in less affluent countries and regions.

Contents

Definitions and approaches

At its heart, demand management is about forecasting demand for good and services and planning how that demand will be met. In many applications demand management is also increasingly about reducing or moderating demand (e.g. water, energy, acute clinical health services, etc.). In energy demand management, for example, the offer of cheaper off-peak energy tariffs is a common method for shifting energy demand away from peak periods and towards periods when there is surplus energy available.

Water demand management depends on better understanding of exactly how much water different users are using for different purposes (the quantitative challenge) and on users' decision-making processes (the qualitative challenge). With these sorts of data it is possible to create policies, at utility scale (usually a city-region) or national scale (government), to promote reductions in user demand. If skilfully done, such policies can address supply-demand imbalances by reducing demand to available supply, though the risk of negative impacts on utilities, consumers and the environment are all too real. There are three basic approaches to water demand management policy and one key challenge, all of which are discussed below with reference to the key sectors where water demand management is practiced: domestic, agricultural and industrial.

Domestic water demand management

Consumer education

All water utilities and most governments now pursue programmes of public education aimed at promoting reductions in water use. Such programmes have increasingly moved on-line, targeting consumers with tweets, Instagram posts and even Tik Toks enthusiastically promoting water conservation. This is a welcome change from previous approaches based on physical mailshots of enclosures with water bills as there is little evidence that these exercised much influence on water users' behaviours.

An under-recognised challenge with consumer education approaches to demand management is that they tend to assume that water users are always rational agents, collecting all relevant data and then producing purely rational decisions based on the data. Research into water users' behaviours shows that most decisions are more linked to habit, perception and social conventions than rationality, particularly in the domestic sphere. In agriculture and industry consumer education approaches are less common, as there is a greater reliance on water tariffs and direct state regulation of water abstraction and wastewater return.

Replacement of fixtures and fittings

In city-regions where supply constraints are more severe water utilities have occasionally adopted the approach of offering to replace water-consumptive fixtures and fittings with water-conservative ones. A good example is in south California where worries about running out of water led to a comprehensive programme of consumer education, leak detection, tariff reform and plumbing retrofits. Key to success has been the replacement of over two million high flush volume toilets with low flush volume alternatives. The authority has also supplied more than three million high efficiency showerheads and over two hundred thousand tap/faucet aerators (mixing air with water reduces flow rates whilst maintaining performance). These measures have saved over 66,000 acre-feet (conversion) of water per year, which can then be directed to improving supply-demand balance.

Water tariff/price reform

Many commentators argue that utilities often do not charge prices that encourage users to conserve water. Certainly domestic water tariffs are low in North America and Europe, and indeed in much of the rest of the world. But the drive to discipline user demand by ratcheting up water tariffs brings with it a series of problems. First, available research suggests that there is relatively little "price elasticity of demand" linked to domestic water consumption—estimates vary between about -0.1 and -0.4, meaning that the demand for water decreases by 0.1% to 0.4% for every 1% increase in tariffs. Second, attempts to achieve demand reduction by increasing price can create "water poverty" (usually defined as households spending more than 3-5% of household income on water services). Third, the data and data management required for even simple charging schemes (single volumetric charges) can cost more than the saved water cost to produce in the first place. More complex tariffs (e.g. rising block or seasonal tariffs) require even more expensive and complex data systems that are not yet widespread even in richer countries.

The problem of data

Assessing the efficacy of the above policies, singly or in combination, requires data that is expensive to acquire and complex to manage and process. Moreover, since water consumption is the product of a large number of interacting drivers, constraints and schemes, involving periodic social media or mail-shot communications to consumers promoting water conservation, require sufficiently frequent meter readings (e.g. daily, weekly or monthly) at household scale to be quite expensive to implement. All the more so in countries like the UK where domestic meter penetration is only 60 or 65%. Much enthusiasm has been generated around the prospects that so-called smart meters (meters combining measurement, data logging and communications) could greatly facilitate water demand management. To date results are not encouraging, mostly due to the relatively poor state of the required data infrastructure.

Irrigation demand management

Agricultural water use is vastly larger than industrial or domestic water use globally and in most countries, therefore irrigation water demand management is an important topic. As with domestic water demand management lack of appropriate data is a frequently encountered problem signalling the importance of measuring water usage at the farm and distributor level and at appropriate time steps. As an historical aside, there is evidence from both historical and archaeological records of technology development for water allocation and assessment in India, the Arabian Peninsula and Peru.

Two major themes dominate research in irrigation water demand management: attempts to understand, and manipulate, farmers' irrigation decision-making and understanding optimal irrigation strategies for specific crops or environments. [2] [3]

Industrial water demand management

Water demand management in industry is managed primarily through regulation of water abstraction (especially for large industrial water users) and regulation of wastewater discharge. In many countries large water users can apply for permits to directly remove ="abstract"- water from the natural environment for industrial purposes. A common example is the energy industry which requires large volumes of water for cooling purposes in thermal and hydropower electricity generation facilities. In the UK electricity generators are responsible for more than half of all licensed water abstraction. In other countries the proportion of abstraction earmarked for electricity generation varies widely, but it almost always a significant factor in overall water supply demand balance. [4] Many studies of this water-energy nexus focus on process optimisation or input substitution. [5]

An important part of industrial water demand management is the encouragement of "closed loop" processes within facilities. For example, in textiles production, which uses significant volumes of water for washing and dying, closed loop principles in water use reduce both the total demand for new abstractions and the risk to the natural environment from inadequately treated wastewaters. Such approaches however require significant capital investment, especially in modern multi-stage wastewater treatment, and are not yet universal in textiles facilities around the world. [6] [7]

Current research directions

Since pressures on water suppliers continue to mount, researchers are increasingly focussing on developing the empirical data base underpinning demand management approaches. As noted above, how far researchers can go in large measure depends on data infrastructure and there have been innovations here too. There are increasing numbers of studies that focus on special environments (e.g. university student accommodation, military housing, etc.) and have compiled the required quantitative and qualitative data to robustly assess the impact of demand reduction policies/programmes. [8] [9] There are also ongoing efforts to rigorously determine price elasticity of demand for more generalised residential populations. [10] [11]

There are also new approaches emerging, based on the critique of the mainstream approach's tendency to assume rational agents as the policy target. In particular, social practice theory and the related ISM ("individual, social, material") approaches abandon the idea of rational agents and focus attention on the co-constitutive interrelations between people deploying materials within complex social frames. [12] These water-mediated interrelations were extensively researched by the "Traces of Water" research project led by Browne, Pullinger and Medd in the first decade of the 21st century. [13]

See also

Related Research Articles

This aims to be a complete article list of economics topics:

<span class="mw-page-title-main">Water supply</span> Provision of water by public utilities, commercial organisations or others

Water supply is the provision of water by public utilities, commercial organisations, community endeavors or by individuals, usually via a system of pumps and pipes. Public water supply systems are crucial to properly functioning societies. These systems are what supply drinking water to populations around the globe. Aspects of service quality include continuity of supply, water quality and water pressure. The institutional responsibility for water supply is arranged differently in different countries and regions. It usually includes issues surrounding policy and regulation, service provision and standardization.

<span class="mw-page-title-main">Water supply network</span> System of engineered hydrologic and hydraulic components providing water

A water supply network or water supply system is a system of engineered hydrologic and hydraulic components that provide water supply. A water supply system typically includes the following:

  1. A drainage basin
  2. A raw water collection point where the water accumulates, such as a lake, a river, or groundwater from an underground aquifer. Raw water may be transferred using uncovered ground-level aqueducts, covered tunnels, or underground water pipes to water purification facilities.
  3. Water purification facilities. Treated water is transferred using water pipes.
  4. Water storage facilities such as reservoirs, water tanks, or water towers. Smaller water systems may store the water in cisterns or pressure vessels. Tall buildings may also need to store water locally in pressure vessels in order for the water to reach the upper floors.
  5. Additional water pressurizing components such as pumping stations may need to be situated at the outlet of underground or aboveground reservoirs or cisterns.
  6. A pipe network for distribution of water to consumers and other usage points
  7. Connections to the sewers are generally found downstream of the water consumers, but the sewer system is considered to be a separate system, rather than part of the water supply system.

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

Water supply and sanitation in Singapore are intricately linked to the historical development of Singapore. It is characterised by a number of achievements in a challenging environment with geographical limitations. Access to water in Singapore is universal, affordable, efficient and of high quality.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response seeks to adjust the demand for power instead of adjusting the supply.

Public water supply and sanitation in Germany is universal and of good quality. Some salient features of the sector compared to other developed countries are its very low per capita water use, the high share of advanced wastewater treatment and very low distribution losses. Responsibility for water supply and sanitation provision lies with municipalities, which are regulated by the states. Professional associations and utility associations play an important role in the sector. As in other EU countries, most of the standards applicable to the sector are set in Brussels. Recent developments include a trend to create commercial public utilities under private law and an effort to modernize the sector, including through more systematic benchmarking.

Water supply and sanitation in Indonesia is characterized by poor levels of access and service quality. Almost 30 million people lack access to an improved water source and more than 70 million of the country's 264 million population has no access to improved sanitation. Only about 2% of people have access to sewerage in urban areas; this is one of the lowest in the world among middle-income countries. Water pollution is widespread on Bali and Java. Women in Jakarta report spending US$11 per month on boiling water, implying a significant burden for the poor.

Water supply and sanitation in China is undergoing a massive transition while facing numerous challenges such as rapid urbanization, increasing economic inequality, and the supply of water to rural areas. Water scarcity and pollution also impact access to water.

Water supply and sanitation in Saudi Arabia is characterized by challenges and achievements. One of the main challenges is water scarcity. In order to overcome water scarcity, substantial investments have been undertaken in seawater desalination, water distribution, sewerage and wastewater treatment. Today about 50% of drinking water comes from desalination, 40% from the mining of non-renewable groundwater and only 10% from surface water in the mountainous southwest of the country. The capital Riyadh, located in the heart of the country, is supplied with desalinated water pumped from the Arabian Gulf over a distance of 467 km. Water is provided almost for free to residential users. Despite improvements, service quality remains poor, for example in terms of continuity of supply. Another challenge is weak institutional capacity and governance, reflecting general characteristics of the public sector in Saudi Arabia. Among the achievements is a significant increases in desalination, and in access to water, the expansion of wastewater treatment, as well as the use of treated effluent for the irrigation of urban green spaces, and for agriculture.

Water supply and sanitation in Yemen is characterized by many challenges as well as some achievements. A key challenge is severe water scarcity, especially in the Highlands, prompting The Times of London to write "Yemen could become the first nation to run out of water". A second key challenge is a high level of poverty, making it very difficult to recover the costs of service provision. Access to water supply sanitation in Yemen is as low or even lower than that in many sub-Saharan African countries. Yemen is both the poorest country and the most water-scarce country in the Arab world. Third, the capacity of sector institutions to plan, build, operate and maintain infrastructure remains limited. Last but not least the security situation makes it even more difficult to improve or even maintain existing levels of service.

The Philippines' water supply system dates back to 1946, after the country declared independence. Government agencies, local institutions, non-government organizations, and other corporations are primarily in charge of the operation and administration of water supply and sanitation in the country.

Public water supply and sanitation in Denmark is characterized by universal access and generally good service quality. Some salient features of the sector in the Denmark compared to other developed countries are:

<span class="mw-page-title-main">Water resources</span> Sources of water that are potentially useful

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. 97% of the water on the Earth is salt water and only three percent is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. Artificial sources of fresh water can include treated wastewater and desalinated seawater. Human uses of water resources include agricultural, industrial, household, recreational and environmental activities.

Water supply and sanitation in Jordan is characterized by severe water scarcity, which has been exacerbated by forced immigration as a result of the 1948 Arab–Israeli War, the Six-Day War in 1967, the Gulf War of 1990, the Iraq War of 2003 and the Syrian Civil War since 2011. Jordan is considered one of the ten most water scarce countries in the world. High population growth, the depletion of groundwater reserves and the impacts of climate change are likely to aggravate the situation in the future.

A water tariff is a price assigned to water supplied by a public utility through a piped network to its customers. The term is also often applied to wastewater tariffs. Water and wastewater tariffs are not charged for water itself, but to recover the costs of water treatment, water storage, transporting it to customers, collecting and treating wastewater, as well as billing and collection. Prices paid for water itself are different from water tariffs. They exist in a few countries and are called water abstraction charges or fees. Abstraction charges are not covered in this article, but in the article on water pricing). Water tariffs vary widely in their structure and level between countries, cities and sometimes between user categories. The mechanisms to adjust tariffs also vary widely.

Water pricing is a term that covers various processes to assign a price to water. These processes differ greatly under different circumstances.

Water supply and sanitation in Japan is characterized by numerous achievements and some challenges. The country has achieved universal access to water supply and sanitation; has one of the lowest levels of water distribution losses in the world; regularly exceeds its own strict standards for the quality of drinking water and treated waste water; uses an effective national system of performance benchmarking for water and sanitation utilities; makes extensive use of both advanced and appropriate technologies such as the jōkasō on-site sanitation system; and has pioneered the payment for ecosystem services before the term was even coined internationally. Some of the challenges are a decreasing population, declining investment, fiscal constraints, ageing facilities, an ageing workforce, a fragmentation of service provision among thousands of municipal utilities, and the vulnerability of parts of the country to droughts that are expected to become more frequent due to climate change.

The water, energy and food security nexus according to the Food And Agriculture Organisation of the United Nations (FAO), means that water security, energy security and food security are very much linked to one another, meaning that the actions in any one particular area often can have effects in one or both of the other areas.

Sustainable energy management in the wastewater sector applies the concept of sustainable management to the energy involved in the treatment of wastewater. The energy used by the wastewater sector is usually the largest portion of energy consumed by the urban water and wastewater utilities. The rising costs of electricity, the contribution to greenhouse gas emissions of the energy sector and the growing need to mitigate global warming, are driving wastewater utilities to rethink their energy management, adopting more energy efficient technologies and processes and investing in on-site renewable energy generation.

References

  1. Staddon, Chad (2016). Managing Europe's water resources : twenty-first century challenges. London: Routledge. ISBN   9781315593548.
  2. Karami, Ezatollah (January 2006). "Appropriateness of farmers' adoption of irrigation methods: The application of the AHP model". Agricultural Systems. 87 (1): 101–119. doi:10.1016/j.agsy.2005.01.001.
  3. Sun, J.; Li, Y.P.; Suo, C.; Liu, Y.R. (May 2019). "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia". Agricultural Water Management. 216: 76–88. doi:10.1016/j.agwat.2019.01.025. S2CID   159274700.
  4. Liu, Lu; Hejazi, Mohamad; Patel, Pralit; Kyle, Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon; Edmonds, James (May 2015). "Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus". Technological Forecasting and Social Change. 94: 318–334. doi: 10.1016/j.techfore.2014.11.004 .
  5. DeNooyer, Tyler A.; Peschel, Joshua M.; Zhang, Zhenxing; Stillwell, Ashlynn S. (January 2016). "Integrating water resources and power generation: The energy–water nexus in Illinois". Applied Energy. 162: 363–371. doi:10.1016/j.apenergy.2015.10.071.
  6. Bidu, J. M.; Van der Bruggen, B.; Rwiza, M. J.; Njau, K. N. (15 May 2021). "Current status of textile wastewater management practices and effluent characteristics in Tanzania". Water Science and Technology. 83 (10): 2363–2376. doi:10.2166/wst.2021.133. PMC   2021 . PMID   34032615.
  7. Sözen, Seval; Dulkadiroglu, Hakan; Begum Yucel, Ayse; Insel, Guclu; Orhon, Derin (April 2019). "Pollutant footprint analysis for wastewater management in textile dye houses processing different fabrics". Journal of Chemical Technology & Biotechnology. 94 (4): 1330–1340. doi:10.1002/jctb.5891. S2CID   104299263.
  8. Simpson, Karen; Staddon, Chad; Ward, Sarah (31 January 2019). "Challenges of Researching Showering Routines: From the Individual to the Socio-Material". Urban Science. 3 (1): 19. doi: 10.3390/urbansci3010019 .
  9. Dhungel, Ramesh; Fiedler, Fritz (January 2014). "Price Elasticity of Water Demand in a Small College Town: An Inclusion of System Dynamics Approach for Water Demand Forecast". Air, Soil and Water Research. 7: ASWR.S15395. doi: 10.4137/ASWR.S15395 . S2CID   57481919.
  10. Ščasný, Milan; Smutná, Šarlota (June 2021). "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades". Journal of Consumer Affairs. 55 (2): 580–608. doi:10.1111/joca.12358. hdl: 10419/203232 . S2CID   213774416.
  11. Garrone, Paola; Grilli, Luca; Marzano, Riccardo (August 2019). "Price elasticity of water demand considering scarcity and attitudes". Utilities Policy. 59: 100927. doi:10.1016/j.jup.2019.100927. hdl: 11311/1122185 . S2CID   198692998.
  12. Larkin, A.; Hoolohan, C.; McLachlan, C. (October 2020). "Embracing context and complexity to address environmental challenges in the water-energy-food nexus". Futures. 123: 102612. doi: 10.1016/j.futures.2020.102612 . S2CID   224852942.
  13. Guy, Simon; Marvin, Simon; Medd, Will; Moss, Timothy (2011). Shaping urban infrastructures : intermediaries and the governance of socio-technical networks. London: Earthscan. ISBN   9781138996137.