Wave spring

Last updated

A wave spring, also known as coiled wave spring or scrowave spring, is a spring made up of pre-hardened flat wire in a process called on-edge coiling [1] (also known as edge-winding). During this process, waves are added to give it a spring effect. [2] [3] The number of turns and waves can be easily adjusted to accommodate stronger force or meet specific requirements. [2]

Spring (device) elastic device

A spring is an elastic object that stores mechanical energy. Springs are typically made of spring steel. There are many spring designs. In everyday use, the term often refers to coil springs.



A wave spring has advantages over a traditional coiled spring or a washer: [4]

Washer (hardware) thin plate with a hole, normally used to distribute the load of a threaded fastener

A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration. Washers often have an outer diameter (OD) about twice their inner diameter (ID), but this can vary quite widely.


Multiple types of wave spring are available: [4] [5] Single-turn wave springs include gap single-turn and overlap single-turn type. Multi-turn wave spring types, include shim-end and plain-end types. The nested wave spring incorporates smaller waves within larger ones.

Single-turn wave spring

Single turn wave spring Single turn wave spring.png
Single turn wave spring

Single-turns are best for applications with short deflection and low to medium forces. The number of waves and material thickness can be changed to accommodate stronger forces. It is used for bearing pre-load. [6] [7]

Multi-turn wave spring

A multi-turn wave spring can decrease the needed axial space. It is suited for applications with large deflection and a small spring rate. A wide range of forces can be accommodated. [8] [9]

Nested wave spring

Eliminates the need to stack springs to accommodate higher loads. It produces high force while maintaining the precision of a circular-grain wave spring. It replaces a stack of belleville washers where a high but accurate force is needed. [5]




  1. "Wave Springs- Advantages".
  2. 1 2 Rotorclip: Advantages
  3. Smalley Steel Ring Company. (2005). Engineering and Parts Catalog. p.7
  4. 1 2 Rotor Clip Company., Inc. (2010). Product Specifications. p. 12.
  5. 1 2 Smalley Steel Ring Company.(2005). Engineering and Parts Catalog. p.14
  6. Rotor Clip Company., Inc. (2010). Company Overview. p.11
  7. Preload
  8. Rotor Clip Company., Inc. (2012). Wave Springs. p.2
  9. Matumura-Kohki Co.,Ltd. (2009).Catalog. p.20
  10. Rotor Clip Company., Inc. (2010). Product Specifications. p. 10 - 11.
  11. 1 2 Smalley Steel Ring Company.(2005). Engineering and Parts Catalog. p.84
  12. 1 2 Rotor Clip Company., Inc. (2012). Wave Springs. p.2.

Related Research Articles

Electromagnetic coil electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil, spiral or helix. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

Electric motor electromechanical device

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of rotation of a shaft. Electric motors can be powered by direct current (DC) sources, such as from batteries, motor vehicles or rectifiers, or by alternating current (AC) sources, such as a power grid, inverters or electrical generators. An electric generator is mechanically identical to an electric motor, but operates in the reverse direction, converting mechanical energy into electrical energy.

Windpump A windmill for pumping water

A windpump is a type of windmill which is used for pumping water.

Commutator (electric) rotary electrical switch that periodically reverses the current direction between the rotor and the external circuit

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

Stator stationary part of a rotary system

The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors or biological rotors. Energy flows through a stator to or from the rotating component of the system. In an electric motor, the stator provides a rotating magnetic field that drives the rotating armature; in a generator, the stator converts the rotating magnetic field to electric current. In fluid powered devices, the stator guides the flow of fluid to or from the rotating part of the system.

Distributor device in the ignition system of an internal combustion engine

A distributor is an enclosed rotating shaft used in spark-ignition internal combustion engines that have mechanically-timed ignition. The distributor's main function is to route secondary, or high voltage, current from the ignition coil to the spark plugs in the correct firing order, and for the correct amount of time. Except in magneto systems, the distributor also houses a mechanical or inductive breaker switch to open and close the ignition coil's primary circuit.

DC motor motor that relies on magnet poles that repel and attract

A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current flow in part of the motor.

Belleville washer type of spring

A Belleville washer, also known as a coned-disc spring, conical spring washer, disc spring, Belleville spring or cupped spring washer, is a conical shell which can be loaded along its axis either statically or dynamically. A Belleville washer is a type of spring shaped like a washer. It is the frusto-conical shape that gives the washer its characteristic spring.

Thrust bearing

A thrust bearing is a particular type of rotary bearing. Like other bearings they permit rotation between parts, but they are designed to support a predominantly axial load.

Spring steel Industry

Spring steel is a name given to a wide range of steels used in the manufacture of springs, prominently in automotive and industrial suspension applications. These steels are generally low-alloy manganese, medium-carbon steel or high-carbon steel with a very high yield strength. This allows objects made of spring steel to return to their original shape despite significant deflection or twisting.

Gramme machine

A Gramme machine, Gramme ring, Gramme magneto, or Gramme dynamo is an electrical generator that produces direct current, named for its Belgian inventor, Zénobe Gramme, and was built as either a dynamo or a magneto. It was the first generator to produce power on a commercial scale for industry. Inspired by a machine invented by Antonio Pacinotti in 1860, Gramme was the developer of a new induced rotor in form of a wire-wrapped ring and demonstrated this apparatus to the Academy of Sciences in Paris in 1871. Although popular in 19th century electrical machines, the Gramme winding principle is no longer used since it makes inefficient use of the conductors. The portion of the winding on the interior of the ring cuts no flux and does not contribute to energy conversion in the machine. The winding requires twice the number of turns and twice the number of commutator bars as an equivalent drum-wound armature.

AC motor electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

Rotor (electric) non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

A retaining ring is a fastener that holds components or assemblies onto a shaft or in a housing/bore when installed - typically in a groove - for one time use only. Once installed, the exposed portion acts as a shoulder which retains the specific component or assembly. Circlips are a type of retaining ring.

ICF coaches Type of railway rolling stock used by Indian railways

Integral Coach Factory (ICF) coaches are conventional passenger coaches used on the majority of main-line trains in India. The design of the coach was developed by Integral Coach Factory, Perambur, Chennai, India in collaboration with the Swiss Car & Elevator Manufacturing Co, Schlieren, Switzerland in the 1950s. The design is also called the Schlieren design based on the location of the Swiss company. The 1st ICF coach had been flagged by then Prime Minister Jawaharlal Nehru on 2 October 1955. The last ever ICF coach was flagged off by senior technician Shri Bhaskar P. in the presence of Railway Board Chairman Ashwani Lohani on 19 January 2018. The Indian Railways intends to phase out ICF coaches and replace all of them with the newer LHB coaches and Train 18 or Train 20 coaches over a period of time, once the codal life of the existing ICF coaches end.

A pipe support or pipe hanger is a designed element that transfer the load from a pipe to the supporting structures. The load includes the weight of the pipe proper, the content that the pipe carries, all the pipe fittings attached to pipe, and the pipe covering such as insulation. The four main functions of a pipe support are to anchor, guide, absorb shock, and support a specified load. Pipe supports used in high or low temperature applications may contain insulation materials. The overall design configuration of a pipe support assembly is dependent on the loading and operating conditions.

Magneto electricity-producing machine

A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets.

Spherical roller thrust bearing

A spherical roller thrust bearing is a rolling-element bearing of thrust type that permits rotation with low friction, and permits angular misalignment. The bearing is designed to take radial loads, and heavy axial loads in one direction. Typically these bearings support a rotating shaft in the bore of the shaft washer that may be misaligned in respect to the housing washer. The misalignment is possible due to the spherical internal shape of the house washer.