Wave spring

Last updated

A wave spring, also known as coiled wave spring or scrowave spring, is a spring made up of pre-hardened flat wire in a process called on-edge coiling [1] (also known as edge-winding). During this process, waves are added to give it a spring effect. [2] [3] The number of turns and waves can be easily adjusted to accommodate stronger force or meet specific requirements. [2]

Contents

Advantages

A wave spring has advantages over a traditional coiled spring or a washer: [4]

Varieties

There are several types of wave spring: [4] [5] Single-turn wave springs include gap single-turn and overlap single-turn type. Multi-turn wave spring types, include shim-end and plain-end types. The nested wave spring incorporates smaller waves within larger ones.

Single-turn wave spring

Single-turn springs are best for applications with short deflection and low to medium forces. The number of waves and material thickness can be changed to accommodate stronger forces. They are used for bearing pre-load. [6] [7]

Multi-turn wave spring

A multi-turn wave spring can decrease the needed axial space. It is suited for applications with large deflection and a small spring rate. A wide range of forces can be accommodated. [8] [9]

Nested wave spring

Eliminates the need to stack springs to accommodate higher loads. It produces high force while maintaining the precision of a circular-grain wave spring. It replaces a stack of belleville washers where a high but accurate force is needed. [5]

Linear Wave Springs

a type of continuous wave-formed wire length produced from spring-tempered materials. They exhibit similar load/deflection characteristics to wave springs and can act as a load-bearing device. [10] [11]

Pitched Coil Springs

also known as a Wave Spring or a Zigzag Spring, is a type of spring that consists of a series of connected loops or waves formed in a zigzag pattern. [10] [12]

Interlaced wave spring

a type of spring that is formed by combining two constituent wave springs of similar thickness, amplitude, and frequency. [13] [14]

Materials

Citations

  1. "Wave Springs- Advantages".
  2. 1 2 Rotorclip: Advantages
  3. Smalley Steel Ring Company. (2005). Engineering and Parts Catalog. p.7
  4. 1 2 Rotor Clip Company., Inc. (2010). Product Specifications. p. 12.
  5. 1 2 Smalley Steel Ring Company.(2005). Engineering and Parts Catalog. p.14
  6. Rotor Clip Company., Inc. (2010). Company Overview. p.11
  7. Preload [ dead link ]
  8. Rotor Clip Company., Inc. (2012). Wave Springs. p.2
  9. Matumura-Kohki Co., Ltd. (2009).Catalog. p.20
  10. 1 2 Lispring Company., Inc. (2024). Wave Spring.
  11. linear wave springs
  12. Pitched Coil Spring
  13. Lispring Company., Inc. (2024). Wave Spring.
  14. Interlaced wave spring
  15. Rotor Clip Company., Inc. (2010). Product Specifications. p. 10 - 11.
  16. 1 2 Smalley Steel Ring Company.(2005). Engineering and Parts Catalog. p.84
  17. 1 2 Rotor Clip Company., Inc. (2012). Wave Springs. p.2.

Related Research Articles

<span class="mw-page-title-main">Clutch</span> Mechanical device that connects and disconnects two rotating shafts or other moving parts

A clutch is a mechanical device that allows an output shaft to be disconnected from a rotating input shaft. The clutch's input shaft is typically attached to a motor, while the clutch's output shaft is connected to the mechanism that does the work.

<span class="mw-page-title-main">Tesla turbine</span> Bladeless centripetal flow turbine

The Tesla turbine is a bladeless centripetal flow turbine invented by Nikola Tesla in 1913. It functions as nozzles apply a moving fluid to the edges of a set of discs. The engine uses smooth discs rotating in a chamber to generate rotational movement due to the momentum exchange between the fluid and the discs. The discs are arranged in an orientation similar to a stack of CDs on an axle.

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Stepper motor</span> Electric motor for discrete partial rotations

A stepper motor, also known as step motor or stepping motor, is a Brushless DC electric motor that rotates in a series of small and discrete angular steps. Stepper motors can be set to any given step position without needing a position sensor for feedback. The step position can be rapidly increased or decreased to create continuous rotation, or the motor can be ordered to actively hold its position at one given step. Motors vary in size, speed, step resolution, and torque.

<span class="mw-page-title-main">Commutator (electric)</span> Device for changing direction of current

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

<span class="mw-page-title-main">Spring (device)</span> Elastic object that stores mechanical energy

A spring is a device consisting of an elastic but largely rigid material bent or molded into a form that can return into shape after being compressed or extended. Springs can store energy when compressed. In everyday use, the term most often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Belleville washer</span> Type of spring shaped like a washer

A Belleville washer, also known as a coned-disc spring, conical spring washer, disc spring, Belleville spring or cupped spring washer, is a conical shell which can be loaded along its axis either statically or dynamically. A Belleville washer is a type of spring shaped like a washer. It is the shape, a cone frustum, that gives the washer its characteristic spring.

<span class="mw-page-title-main">Washer (hardware)</span> Thin plate with a hole, normally used to distribute the load of a threaded fastener

A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration.

<span class="mw-page-title-main">Thrust bearing</span> Family of rotary bearings designed to support axial loads

A thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

<span class="mw-page-title-main">Expansion joint</span> Construction assembly for absorbing thermally-induced volume changes

A expansion joint, or movement joint, is an assembly designed to hold parts together while safely absorbing temperature-induced expansion and contraction of building materials. They are commonly found between sections of buildings, bridges, sidewalks, railway tracks, piping systems, ships, and other structures.

An induction heater is a key piece of equipment used in all forms of induction heating. Typically an induction heater operates at either medium frequency (MF) or radio frequency (RF) ranges.

<span class="mw-page-title-main">Rotor (electric)</span> Non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

A retaining ring is a fastener that holds components or assemblies onto a shaft or in a housing/bore when installed - typically in a groove - for one time use only. Once installed, the exposed portion acts as a shoulder which retains the specific component or assembly. Circlips are a type of retaining ring.

A pipe support or pipe hanger is a designed element that transfer the load from a pipe to the supporting structures. The load includes the weight of the pipe proper, the content that the pipe carries, all the pipe fittings attached to pipe, and the pipe covering such as insulation. The four main functions of a pipe support are to anchor, guide, absorb shock, and support a specified load. Pipe supports used in high or low temperature applications may contain insulation materials. The overall design configuration of a pipe support assembly is dependent on the loading and operating conditions.

<span class="mw-page-title-main">Magneto</span> Electricity-producing machine

A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets.

<span class="mw-page-title-main">Bolt snap</span> Sprung slide gated snap hook

A bolt snap is a type of snap hook with a manually operated bolt action slide gate of medium security used to clip a light load to a ring, eye, loop or bight to temporarily secure or suspend an object. They are used for a wide variety of applications including dog leads and for clipping scuba equipment to the diving harness. A similar but more secure device used to attach sails to a stay is known as a piston hank. It differs from a snap shackle in that the load is not carried by the gate. The bolt snap must be actively operated by the user to clip or unclip, and is not easily snagged or unintentionally clipped or unclipped by pressing or bumping against the surroundings.

<span class="mw-page-title-main">Axial flux motor</span> Type of electric motor construction

An axial flux motor is a geometry of electric motor construction where the gap between the rotor and stator, and therefore the direction of magnetic flux between the two, is aligned parallel with the axis of rotation, rather than radially as with the concentric cylindrical geometry of the more common radial flux motor. With axial flux geometry torque increases with the cube of the rotor diameter, whereas in a radial flux the increase is only quadratic. Axial flux motors have a larger magnetic surface and overall surface area than radial flux motors for a given volume.

In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field from electric current, and uses the magnetic field to create linear motion.

References