Waves4Power

Last updated

Waves4Power is a Swedish-based developer of buoy-based Offshore Wave Energy Converter (OWEC) systems. [1] A demonstration plant was installed in 2016 at the Runde Environmental Centre in Norway, where testing was conducted with WaveEL, an offshore buoy. This was connected via sub-sea cable to the shore based power grid. [2] [3] [4]

In 2020, the company received a grant from Ocean DEMO enabling it to access the power-connected test berths at EMEC for three years. In addition Waves4Power will be able to sell and deliver electricity to the power grid in Scotland according to the rules set out in a power Purchase agreement. During the three year period, Waves4Power will receive up to GBP 300,000 every year for three years. [5]

A partnership with Dutch engineering specialist BnD-Engineering is moving to commercialize and deploy the system on a global scale. [6]

Ongoing research and development is done with Chalmers University of Technology. [7]

Related Research Articles

<span class="mw-page-title-main">Wave power</span> Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

<span class="mw-page-title-main">Pelamis Wave Energy Converter</span>

The Pelamis Wave Energy Converter was a technology that used the motion of ocean surface waves to create electricity. The machine was made up of connected sections which flex and bend as waves pass; it is this motion which is used to generate electricity.

<span class="mw-page-title-main">CETO</span> Submerged wave power technology

CETO is a wave-energy technology that converts kinetic energy from ocean swell into electrical power and directly desalinates freshwater through reverse osmosis. The technology was developed and tested onshore and offshore in Fremantle, Western Australia. In early 2015 a CETO 5 production installation was commissioned and connected to the grid. As of January 2016 all the electricity generated is being purchased to contribute towards the power requirements of HMAS Stirling naval base at Garden Island, Western Australia. Some of the energy will also be used directly to desalinate water.

<span class="mw-page-title-main">European Marine Energy Centre</span>

The European Marine Energy Centre (EMEC) Ltd is a UKAS accredited test and research center focused on wave and tidal power development, based in the Orkney Islands, UK. The centre provides developers with the opportunity to test full-scale grid-connected prototype devices in wave and tidal conditions.

<span class="mw-page-title-main">Floating wind turbine</span> Type of wind turbine

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Spain, Portugal, Japan, France and the United States' West Coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

Pelamis Wave Power designed and manufactured the Pelamis Wave Energy Converter – a technology that uses the motion of ocean surface waves to create electricity. The company was established in 1998 and had offices and fabrication facilities in Leith Docks, Edinburgh, Scotland. It went into administration in November 2014.

Ocean Power Technologies (OPT) is a U.S. publicly owned renewable energy company, providing electric power and communications solutions, services and related for remote offshore applications. The company's PowerBuoy wave energy conversion technology is theoretically scalable to hundreds of megawatts and the generated energy from wave power can be supplied to the grid via submarine cables. Several projects were undertaken around the world, but the economic viability of the theoretical concept has been problematic.

The Oyster was a hydro-electric wave energy device that used the motion of ocean waves to generate electricity. It was made up of a Power Connector Frame (PCF), which is bolted to the seabed, and a Power Capture Unit (PCU). The PCU is a hinged buoyant flap that moves back and forth with movement of the waves. The movement of the flap drives two hydraulic pistons that feed high-pressured water to an onshore hydro-electric turbine, which drives a generator to make electricity. Oyster was stationed at the European Marine Energy Centre (EMEC) at its Billia Croo site in Orkney, Scotland until the company ceased trading in 2015.

Aquamarine Power was a British wave energy company, founded in 2005 to commercialise the Oyster wave energy converter, a device to capture energy from near-shore waves. The company's head offices were in Edinburgh, Scotland. The company ceased trading in November 2015.

The Lysekil project is an ongoing wave power project which is run by the Centre for Renewable Electric Energy Conversion at Uppsala University in Sweden.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from the run of a river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

<span class="mw-page-title-main">Wave power in the United States</span>

Wave power in the United States is under development in several locations off the east and west coasts as well as Hawaii. It has moved beyond the research phase and is producing reliable energy for the Grid. Its use to-date has been for situations where other forms of energy production are not economically viable and as such, the power output is currently modest. But major installations are planned to come on-line within the next few years.

<span class="mw-page-title-main">MARMOK-A-5</span>

MARMOK-A-5 is an offshore electrical power generator that uses wave energy to create electricity. This device is a spar buoy installed in the maritime testing site BiMEP, in the Bay of Biscay. It is the first grid-connected maritime generator in Spain, and one of the first in the world.

Sotenäs is a wave farm located in Kungshamn, in the municipality of Sotenäs, Sweden. The facility consists of 36 wave energy converters (WECs), with a total installed capacity of nearly 3 MW. Each WEC generates power using point absorber buoys connected to linear generators on the seabed. The generators are located at a depth of 50 m (160 ft). According to Seabased, the technology used in the project could deliver electricity for under 10 cents per kWh. Initial announcements stated that the power plant would eventually expand to around 10 MW capacity, but in 2017 Seabased announced it would no longer expand the plant beyond the 36 WECs already in place.

<span class="mw-page-title-main">Orbital O2</span> Orbital O2 floating tidal stream turbine

Orbital Marine Power is a Scottish renewable energy company focused on the development and global deployment of its pioneering floating turbine technology. The O2 is Orbital's first commercial turbine and represents the culmination of more than 15 years of world leading product development in the UK. The 74 m long turbine is expected to operate in the waters off Orkney for the next 15–20 years with the capacity to meet the annual electricity demand of around 2,000 UK homes with clean, predictable power from the fast-flowing waters while offsetting approximately 2,200 tonnes of CO2 production per year. In a further ground-breaking element of the project, the O2 will provide power to the European Marine Energy Centre's onshore electrolyser to generate green hydrogen that will be used to demonstrate decarbonisation of wider energy requirements.

Mocean EnergyLtd. is a wave energy technology developer, based in Edinburgh and Aberdeen. They are developing a hinged-raft attenuator wave energy converter (WEC) at various scales for different markets.

Many tidal stream generators have been developed over the years to harness the power of tidal currents flowing around coastlines. These are also called tidal stream turbines (TST), tidal energy converters (TEC), or marine hydro-kinetic (MHK) generation. These turbines operate on a similar principle to wind turbines, but are designed to work in a fluid approximately 800 times more dense than air which is moving at a slower velocity. Note that tidal barrages or lagoons operate on a different principle, generating power by impounding the rising and falling tide.

CorPower Ocean AB is a wave energy device developer, headquartered in Stockholm, Sweden. They also have offices in Oslo, Viana do Castelo, and Stromness. The office in Viana do Castelo is an R&D centre that also serves as the manufacturing and service centre for the wave energy converters (WEC).

The Aguçadoura test site is an offshore location in the north of Portugal where grid connected offshore renewable energy devices have been tested, for research and project demonstration. It is about 5 km (3 miles) off the coast of Aguçadoura, Póvoa de Varzim, about 35 km NNE of central Porto.

References

  1. "Alternative Energy Company - Waves4Power AB | AltEnergyMag". www.altenergymag.com. Retrieved 2021-01-04.
  2. Ollson, Maria. "Country Report: Sweden". Ocean Energy Systems. Retrieved 29 October 2015.
  3. Tomasgard, Anne-Mari. "BELIEVES IN GJENNOMBROT FOR WAVE ENERGY". Herønytt. Retrieved 29 October 2015.
  4. Tomasgard, Anne-Mari (12 October 2015). "Believe in Breakthrough for Wave Energy". Hanna Relling Berg. Sunnmørsposten. Retrieved 29 October 2015.
  5. "Waves4Power eyes EMEC setup in 2021". Offshore Energy. 2020-05-21. Retrieved 2021-01-04.
  6. "Waves4Power targets global markets with Bnd-Engineering partnership". Offshore Energy. 2021-04-08. Retrieved 2022-02-24.
  7. Grolms, Martin (2019-05-15). "One Step Forward for Wave Power". Advanced Science News. Retrieved 2022-02-24.