Weighted planar stochastic lattice

Last updated

Physicists often use various lattices to apply their favorite models in them. For instance, the most favorite lattice is perhaps the square lattice. There are 14 Bravais space lattice where every cell has exactly the same number of nearest, next nearest, nearest of next nearest etc neighbors and hence they are called regular lattice. Often physicists and mathematicians study phenomena which require disordered lattice where each cell do not have exactly the same number of neighbors rather the number of neighbors can vary wildly. For instance, if one wants to study the spread of disease, viruses, rumors etc then the last thing one would look for is the square lattice. In such cases a disordered lattice is necessary. One way of constructing a disordered lattice is by doing the following.

Contents

Starting with a square, say of unit area, and dividing randomly at each step only one block, after picking it preferentially with respect to ares, into four smaller blocks creates weighted planar stochastic lattice (WPSL). Essentially it is a disordered planar lattice as its block size and their coordination number are random.

Description

In applied mathematics, a weighted planar stochastic lattice (WPSL) is a structure that has properties in common with those of lattices and those of graphs. In general, space-filling planar cellular structures can be useful in a wide variety of seemingly disparate physical and biological systems. Examples include grain in polycrystalline structures, cell texture and tissues in biology, acicular texture in martensite growth, tessellated pavement on ocean shores, soap froths and agricultural land division according to ownership etc. [1] [2] [3] The question of how these structures appear and the understanding of their topological and geometrical properties have always been an interesting proposition among scientists in general and physicists in particular. Several models prescribe how to generate cellular structures. Often these structures can mimic directly the structures found in nature and they are able to capture the essential properties that we find in natural structures. In general, cellular structures appear through random tessellation, tiling, or subdivision of a plane into contiguous and non-overlapping cells. For instance, Voronoi diagram and Apollonian packing are formed by partitioning or tiling of a plane into contiguous and non-overlapping convex polygons and disks respectively. [2] [4]

Regular planar lattices like square lattices, triangular lattices, honeycomb lattices, etc., are the simplest example of the cellular structure in which every cell has exactly the same size and the same coordination number. The planar Voronoi diagram, on the other hand, has neither a fixed cell size nor a fixed coordination number. Its coordination number distribution is rather Poissonian in nature. [5] That is, the distribution is peaked about the mean where it is almost impossible to find cells which have significantly higher or fewer coordination number than the mean. Recently, Hassan et al proposed a lattice, namely the weighted planar stochastic lattice. For instance, unlike a network or a graph, it has properties of lattices as its sites are spatially embedded. On the other hand, unlike lattices, its dual (obtained by considering the center of each block of the lattice as a node and the common border between blocks as links) display the property of networks as its degree distribution follows a power law. Besides, unlike regular lattices, the sizes of its cells are not equal; rather, the distribution of the area size of its blocks obeys dynamic scaling, [6] whose coordination number distribution follows a power-law. [7] [8]

A snapshot of the weighted stochastic lattice. Snapshot of weighted stochastic lattice.jpg
A snapshot of the weighted stochastic lattice.

Construction of WPSLs

The construction process of the WPSL can be described as follows. It starts with a square of unit area which we regard as an initiator. The generator then divides the initiator, in the first step, randomly with uniform probability into four smaller blocks. In the second step and thereafter, the generator is applied to only one of the blocks. The question is: How do we pick that block when there is more than one block? The most generic choice would be to pick preferentially according to their areas so that the higher the area the higher the probability to be picked. For instance, in step one, the generator divides the initiator randomly into four smaller blocks. Let us label their areas starting from the top left corner and moving clockwise as and . But of course the way we label is totally arbitrary and will bear no consequence to the final results of any observable quantities. Note that is the area of the th block which can be well regarded as the probability of picking the th block. These probabilities are naturally normalized since we choose the area of the initiator equal to one. In step two, we pick one of the four blocks preferentially with respect to their areas. Consider that we pick the block and apply the generator onto it to divide it randomly into four smaller blocks. Thus the label is now redundant and hence we recycle it to label the top left corner while the rest of three new blocks are labelled and in a clockwise fashion. In general, in the th step, we pick one out of blocks preferentially with respect to area and divide randomly into four blocks. The detailed algorithm can be found in Dayeen and Hassan [6] and Hassan, Hassan, and Pavel. [8]

This process of lattice generation can also be described as follows. Consider that the substrate is a square of unit area and at each time step a seed is nucleated from which two orthogonal partitioning lines parallel to the sides of the substrate are grown until intercepted by existing lines. It results in partitioning the square into ever smaller mutually exclusive rectangular blocks. Note that the higher the area of a block, the higher is the probability that the seed will be nucleated in it to divide that into four smaller blocks since seeds are sown at random on the substrate. It can also describes kinetics of fragmentation of two-dimensional objects. [9] [10]

Area size distribution function C(a,t) for three different sizes of the WPSL. In the inset the same data is plotted on the self-similar coordinates and the data collapse of all the data taken at different times collapse into one universal curve. It reveals that the area size distribution function obeys dynamic scaling. Log aC vs a 1 copy.jpg
Area size distribution function C(a,t) for three different sizes of the WPSL. In the inset the same data is plotted on the self-similar coordinates and the data collapse of all the data taken at different times collapse into one universal curve. It reveals that the area size distribution function obeys dynamic scaling.
Degree distribution of the dual of the WPSL and coordination number distribution of the WPSL itself. Distribution WPSL.jpg
Degree distribution of the dual of the WPSL and coordination number distribution of the WPSL itself.

Properties of WPSLs

Before 2000 epidemic models, for instance, were studying by applying them on regular lattices like square lattice assuming that everyone can infect everyone else in the same way. The emergence of a network-based framework has brought a fundamental change, offering a much much better pragmatic skeleton than any time before. Today epidemic models is one of the most active applications of network science, being used to foresee the spread of influenza or to contain Ebola. The WPSL can be a good candidate for applying epidemic like models since it has the properties of graph or network and the properties of traditional lattice as well.

Related Research Articles

Voronoi diagram Type of plane partition

In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane. For each seed there is a corresponding region consisting of all points of the plane closer to that seed than to any other. These regions are called Voronoi cells. The Voronoi diagram of a set of points is dual to its Delaunay triangulation.

Percolation theory Mathematical theory on behavior of connected clusters in a random graph

In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are removed. This is a geometric type of phase transition, since at a critical fraction of removal the network breaks into significantly smaller connected clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles network theory and percolation.

Scale-free network Network whose degree distribution follows a power law

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

Random walk Mathematical formalization of a path that consists of a succession of random steps

In mathematics, a random walk is a mathematical object, known as a stochastic or random process, that describes a path that consists of a succession of random steps on some mathematical space such as the integers.

Random graph Graph generated by a random process

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

Spatial network

A spatial network is a graph in which the vertices or edges are spatial elements associated with geometric objects, i.e. the nodes are located in a space equipped with a certain metric. The simplest mathematical realization is a lattice or a random geometric graph, where nodes are distributed uniformly at random over a two-dimensional plane; a pair of nodes are connected if the Euclidean distance is smaller than a given neighborhood radius. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks and biological neural networks are all examples where the underlying space is relevant and where the graph's topology alone does not contain all the information. Characterizing and understanding the structure, resilience and the evolution of spatial networks is crucial for many different fields ranging from urbanism to epidemiology.

Degree distribution

In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network.

Multifractal system system with multiple fractal dimensions

A multifractal system is a generalization of a fractal system in which a single exponent is not enough to describe its dynamics; instead, a continuous spectrum of exponents is needed.

Barabási–Albert model

The Barabási–Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. Several natural and human-made systems, including the Internet, the world wide web, citation networks, and some social networks are thought to be approximately scale-free and certainly contain few nodes with unusually high degree as compared to the other nodes of the network. The BA model tries to explain the existence of such nodes in real networks. The algorithm is named for its inventors Albert-László Barabási and Réka Albert and is a special case of an earlier and more general model called Price's model.

Watts–Strogatz model

The Watts–Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering. It was proposed by Duncan J. Watts and Steven Strogatz in their joint 1998 Nature paper. The model also became known as the (Watts) beta model after Watts used to formulate it in his popular science book Six Degrees.

In applied probability theory, the Simon model is a class of stochastic models that results in a power-law distribution function. It was proposed by Herbert A. Simon to account for the wide range of empirical distributions following a power-law. It models the dynamics of a system of elements with associated counters. In this model the dynamics of the system is based on constant growth via addition of new elements as well as incrementing the counters at a rate proportional to their current values.

In the study of scale-free networks, a copying mechanism is a process by which such a network can form and grow, by means of repeated steps in which nodes are duplicated with mutations from existing nodes. Several variations of copying mechanisms have been studied. In the general copying model, a growing network starts as a small initial graph and, at each time step, a new vertex is added with a given number k of new outgoing edges. As a result of a stochastic selection, the neighbors of the new vertex are either chosen randomly among the existing vertices, or one existing vertex is randomly selected and k of its neighbors are ‘copied’ as heads of the new edges.

Assortativity

Assortativity, or assortative mixing is a preference for a network's nodes to attach to others that are similar in some way. Though the specific measure of similarity may vary, network theorists often examine assortativity in terms of a node's degree. The addition of this characteristic to network models more closely approximates the behaviors of many real world networks.

Multiplicative cascade

In mathematics, a multiplicative cascade is a fractal/multifractal distribution of points produced via an iterative and multiplicative random process.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

Heterogeneous random walk in one dimension

In studies of dynamics, probability, physics, chemistry and related fields, a heterogeneous random walk in one dimension is a random walk in a one dimensional interval with jumping rules that depend on the location of the random walker in the interval.

In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. More generally it can be seen to be a special case of a Markov renewal process.

In mathematical modeling of social networks, link-centric preferential attachment is a node's propensity to re-establish links to nodes it has previously been in contact with in time-varying networks. This preferential attachment model relies on nodes keeping memory of previous neighbors up to the current time.

Dynamic scaling is a litmus test that shows whether an evolving system exhibits self-similarity. In general a function is said to exhibit dynamic scaling if it satisfies:

Mediation-driven attachment model

In the scale-free network theory, a mediation-driven attachment (MDA) model appears to embody a preferential attachment rule tacitly rather than explicitly. According to MDA rule, a new node first picks a node from the existing network at random and connect itself not with that but with one of the neighbors also picked at random.

References

  1. Rao, Madan; Sengupta, Surajit; Sahu, H. K. (1995-09-11). "Kinematic Scaling and Crossover to Scale Invariance in Martensite Growth". Physical Review Letters. American Physical Society (APS). 75 (11): 2164–2167. Bibcode:1995PhRvL..75.2164R. doi:10.1103/physrevlett.75.2164. ISSN   0031-9007. PMID   10059230.
  2. 1 2 Okabe, Atsuyuki; Boots, Barry; Sugihara, Kokichi; Chiu, Sung Nok; Kendall, D. G., eds. (2000-07-12). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9780470317013. ISBN   978-0-470-31701-3. ISSN   1940-6347.
  3. Ben-Naim, E.; Krapivsky, P. L. (1996-04-22). "Comment on "Kinematic Scaling and Crossover to Scale Invariance in Martensite Growth"". Physical Review Letters. American Physical Society (APS). 76 (17): 3234. Bibcode:1996PhRvL..76.3234B. doi:10.1103/physrevlett.76.3234. ISSN   0031-9007. PMID   10060910.
  4. Delaney, Gary W.; Hutzler, Stefan; Aste, Tomaso (2008-09-16). "Relation Between Grain Shape and Fractal Properties in Random Apollonian Packing with Grain Rotation" (PDF). Physical Review Letters. American Physical Society (APS). 101 (12): 120602. Bibcode:2008PhRvL.101l0602D. doi:10.1103/physrevlett.101.120602. ISSN   0031-9007. PMID   18851353.
  5. de Oliveira, Marcelo M.; Alves, S. G.; Ferreira, S. C.; Dickman, Ronald (2008-09-29). "Contact process on a Voronoi triangulation". Physical Review E. 78 (3): 031133. arXiv: 0810.0240 . Bibcode:2008PhRvE..78c1133D. doi:10.1103/physreve.78.031133. ISSN   1539-3755. PMID   18851019. S2CID   34027358.
  6. 1 2 Dayeen, F.R.; Hassan, M.K. (2016). "Multi-multifractality, dynamic scaling and neighbourhood statistics in weighted planar stochastic lattice". Chaos, Solitons & Fractals. Elsevier BV. 91: 228–234. arXiv: 1409.7928 . Bibcode:2016CSF....91..228D. doi:10.1016/j.chaos.2016.06.006. ISSN   0960-0779.
  7. Hassan, M K; Hassan, M Z; Pavel, N I (2010-09-27). "Scale-free network topology and multifractality in a weighted planar stochastic lattice". New Journal of Physics. 12 (9): 093045. arXiv: 1008.4994 . Bibcode:2010NJPh...12i3045H. doi: 10.1088/1367-2630/12/9/093045 . ISSN   1367-2630.
  8. 1 2 Hassan, M K; Hassan, M Z; Pavel, N I (2011-05-01). "Scale-free coordination number disorder and multifractal size disorder in weighted planar stochastic lattice". Journal of Physics: Conference Series. IOP Publishing. 297 (1): 012010. arXiv: 1104.1831 . Bibcode:2011JPhCS.297a2010H. doi:10.1088/1742-6596/297/1/012010. ISSN   1742-6596. S2CID   119262569.
  9. Krapivsky, P. L.; Ben-Naim, E. (1994-11-01). "Scaling and multiscaling in models of fragmentation". Physical Review E. 50 (5): 3502–3507. arXiv: cond-mat/9407084 . Bibcode:1994PhRvE..50.3502K. doi:10.1103/physreve.50.3502. ISSN   1063-651X. PMID   9962400. S2CID   9600655.
  10. Krapivsky, Pavel; Redner, S.; Ben-naim, E. (2010). A kinetic view of statistical physics. Cambridge New York: Cambridge University Press. ISBN   978-0-521-85103-9. OCLC   672330146.