Weinstein conjecture

Last updated

In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the conjecture claims that on a compact contact manifold, its Reeb vector field should carry at least one periodic orbit.

Contents

By definition, a level set of contact type admits a contact form obtained by contracting the Hamiltonian vector field into the symplectic form. In this case, the Hamiltonian flow is a Reeb vector field on that level set. It is a fact that any contact manifold (M,α) can be embedded into a canonical symplectic manifold, called the symplectization of M, such that M is a contact type level set (of a canonically defined Hamiltonian) and the Reeb vector field is a Hamiltonian flow. That is, any contact manifold can be made to satisfy the requirements of the Weinstein conjecture. Since, as is trivial to show, any orbit of a Hamiltonian flow is contained in a level set, the Weinstein conjecture is a statement about contact manifolds.

It has been known that any contact form is isotopic to a form that admits a closed Reeb orbit; for example, for any contact manifold there is a compatible open book decomposition, whose binding is a closed Reeb orbit. This is not enough to prove the Weinstein conjecture, though, because the Weinstein conjecture states that every contact form admits a closed Reeb orbit, while an open book determines a closed Reeb orbit for a form which is only isotopic to the given form.

The conjecture was formulated in 1978 by Alan Weinstein. [1] In several cases, the existence of a periodic orbit was known. For instance, Rabinowitz showed that on star-shaped level sets of a Hamiltonian function on a symplectic manifold, there were always periodic orbits (Weinstein independently proved the special case of convex level sets). [2] Weinstein observed that the hypotheses of several such existence theorems could be subsumed in the condition that the level set be of contact type. (Weinstein's original conjecture included the condition that the first de Rham cohomology group of the level set is trivial; this hypothesis turned out to be unnecessary).

The Weinstein conjecture was first proved for contact hypersurfaces in in 1986 by Viterbo  [ fr ], [3] then extended to cotangent bundles by Hofer–Viterbo and to wider classes of aspherical manifolds by Floer–Hofer–Viterbo. The presence of holomorphic spheres was used by Hofer–Viterbo. [4] All these cases dealt with the situation where the contact manifold is a contact submanifold of a symplectic manifold. A new approach without this assumption was discovered in dimension 3 by Hofer and is at the origin of contact homology. [5]

The Weinstein conjecture has now been proven for all closed 3-dimensional manifolds by Clifford Taubes. [6] The proof uses a variant of Seiberg–Witten Floer homology and pursues a strategy analogous to Taubes' proof that the Seiberg-Witten and Gromov invariants are equivalent on a symplectic four-manifold. In particular, the proof provides a shortcut to the closely related program of proving the Weinstein conjecture by showing that the embedded contact homology of any contact three-manifold is nontrivial.

See also

Related Research Articles

In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

<span class="mw-page-title-main">Contact geometry</span>

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

<span class="mw-page-title-main">Andreas Floer</span> German mathematician

Andreas Floer was a German mathematician who made seminal contributions to symplectic topology, and mathematical physics, in particular the invention of Floer homology. Floer's first pivotal contribution was a solution of a special case of Arnold's conjecture on fixed points of a symplectomorphism. Because of his work on Arnold's conjecture and his development of instanton homology, he achieved wide recognition and was invited as a plenary speaker for the International Congress of Mathematicians held in Kyoto in August 1990. He received a Sloan Fellowship in 1989.

In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In mathematics, specifically in the field of differential topology, Morse homology is a homology theory defined for any smooth manifold. It is constructed using the smooth structure and an auxiliary metric on the manifold, but turns out to be topologically invariant, and is in fact isomorphic to singular homology. Morse homology also serves as a model for the various infinite-dimensional generalizations known as Floer homology theories.

In mathematics, the Gromov invariant of Clifford Taubes counts embedded pseudoholomorphic curves in a symplectic 4-manifold, where the curves are holomorphic with respect to an auxiliary compatible almost complex structure.

In mathematics, the Lagrangian Grassmannian is the smooth manifold of Lagrangian subspaces of a real symplectic vector space V. Its dimension is 1/2n(n + 1) (where the dimension of V is 2n). It may be identified with the homogeneous space

In mathematics, a smooth algebraic curve in the complex projective plane, of degree , has genus given by the genus–degree formula

<span class="mw-page-title-main">Clifford Taubes</span> American mathematician

Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes.

<span class="mw-page-title-main">Alan Weinstein</span> American mathematician

Alan David Weinstein is a professor of mathematics at the University of California, Berkeley, working in the field of differential geometry, and especially in Poisson geometry.

The Geometry Festival is an annual mathematics conference held in the United States.

<span class="mw-page-title-main">Tomasz Mrowka</span> American mathematician

Tomasz Mrowka is an American mathematician specializing in differential geometry and gauge theory. He is the Singer Professor of Mathematics and former head of the Department of Mathematics at the Massachusetts Institute of Technology.

In geometry and topology, trivial cylinders are certain pseudoholomorphic curves appearing in certain cylindrical manifolds.

The Maryam Mirzakhani Prize in Mathematics is awarded by the U.S. National Academy of Sciences "for excellence of research in the mathematical sciences published within the past ten years." Named after the Iranian mathematician Maryam Mirzakhani, the prize has been awarded every four years since 1988.

<span class="mw-page-title-main">Helmut Hofer</span> German-American mathematician

Helmut Hermann W. Hofer is a German-American mathematician, one of the founders of the area of symplectic topology.

<span class="mw-page-title-main">Michael Hutchings (mathematician)</span> American mathematician

Michael Lounsbery Hutchings is an American mathematician, a professor of mathematics at the University of California, Berkeley. He is known for proving the double bubble conjecture on the shape of two-chambered soap bubbles, and for his work on circle-valued Morse theory and on embedded contact homology, which he defined.

In symplectic geometry, the spectral invariants are invariants defined for the group of Hamiltonian diffeomorphisms of a symplectic manifold, which is closed related to Floer theory and Hofer geometry.

Dietmar Arno Salamon is a German mathematician.

References

  1. Weinstein, A. (1979). "On the hypotheses of Rabinowitz' periodic orbit theorems". Journal of Differential Equations . 33 (3): 353–358. Bibcode:1979JDE....33..353W. doi: 10.1016/0022-0396(79)90070-6 .
  2. Rabinowitz, P. (1979). "Periodic solutions of a Hamiltonian system on a prescribed energy surface". Journal of Differential Equations . 33 (3): 336–352. Bibcode:1979JDE....33..336R. doi: 10.1016/0022-0396(79)90069-X .
  3. Viterbo, C. (1987). "A proof of Weinstein's conjecture in ". Annales de l'institut Henri Poincaré (C) Analyse non linéaire . 4 (4): 337–356. Bibcode:1987AIHPC...4..337V. doi:10.1016/s0294-1449(16)30363-8.
  4. Hofer, H.; Viterbo, C. (1992). "The Weinstein conjecture in the presence of holomorphic spheres". Comm. Pure Appl. Math. 45 (5): 583–622. doi:10.1002/cpa.3160450504.
  5. Hofer, H. (1993). "Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three". Inventiones Mathematicae . 114: 515–563. Bibcode:1993InMat.114..515H. doi:10.1007/BF01232679. S2CID   123618375.
  6. Taubes, C. H. (2007). "The Seiberg-Witten equations and the Weinstein conjecture". Geometry & Topology . 11 (4): 2117–2202. arXiv: math/0611007 . doi:10.2140/gt.2007.11.2117. S2CID   119680690.

Further reading