The TR-2 nuclear reactor, also known as the Westinghouse Test Reactor or Westinghouse Testing Reactor (WTR) was a small research and test reactor designed and manufactured by Westinghouse Electric Corporation at their Waltz Mill site near Madison, Pennsylvania, approximately 30 miles southeast of Pittsburgh. TR-2 was the first privately owned research and test reactor. The reactor suffered an accident which involved severe fuel damage in 1960. [1] [2]
TR-2 was a heterogeneous, low pressure, low temperature, light water cooled and moderated, pressurized water reactor. The primary function of the reactor was to test reactor materials and components. Rather than incorporating an electrically-heated pressurizer vessel as is common in commercial PWRs designed since the 1960s, TR-2 relied on the static water pressure delivered by a tank of water, known as the head tank, which was elevated high above the ground and connected to the reactor vessel by piping. Heat generated by the reactor was transferred to heat exchangers for ultimate heat rejection to the environment via a mechanical draft cooling tower. The reactor was initially permitted to operate at up to 20 Megawatts thermal, though it was designed and constructed to permit eventual operation at a power level of 60 thermal megawatts. [3] Positions for experimental capsules, test loops, and fuel experiments were included in the reactor design; as was a neutron beam port. [4] On January 8, 1960, the Atomic Energy Commission (AEC) issued Amendment 1 to the facility license to permit operation at up to 60 Megawatts thermal. [3] [5] [6]
The reactor was housed inside a structure known as the vapor container, referred to in some literature as a containment structure, which was designed to contain fission products that might be released from the reactor during an accident. The vapor containment was a metal right cylinder approximately 74 feet tall above the surrounding ground level and 70 feet in interior diameter. The top of the vapor container was slightly rounded. There were two airlocks to the vapor container. [7]
A mechanical ventilation system was provided to the process water surge tank and the process water head tank which was elevated almost 250 feet above the ground on a metal support frame approximately 500 feet east of the vapor container. Forced air swept over the surge tank, removing the gasses normally produced during reactor operation, and was then routed to the head tank where the gasses were released via a vent about 250 feet above the surrounding ground level. [8] [9] [7]
The stainless steel reactor vessel was 32 feet tall and 8 feet in diameter, with 1-inch-thick walls. The rector vessel was oriented vertically and surrounded by concrete for radiation shielding. Fuel elements were loaded and removed via a diagonal tube that extended from mid-height of the reactor vessel down to a water-filled transfer canal which connected the vapor shell to the surrounding facility buildings. [7]
Typical for a research and test reactor, it did not produce electricity. [2]
The test reactor was located in the northwest portion of the developed area of the larger Waltz Mill site. [10] The reactor was located on the east side of Waltz Mill Road, approximately 2,300 feet north of the present intersection of Waltz Mill Road and Interstate 70.
The TR-2 core consisted of cylindrical fuel elements. The fuel elements were mechanical assemblies including multiple individual aluminum fuel tubes which contained the uranium fuel; some fuel elements included other reactor instrumentation or experiment components in addition to the fuel tubes. [5] Each fuel assembly had 200 grams of highly enriched uranium fuel as an aluminum-uranium alloy in the walls of three long concentric cylinders around a central aluminum mandrel tube in which small canned specimens could be irradiated. The uranium-aluminum fuel alloy was aluminum clad: cladding thickness was 36 mils; the fuel alloy, 52 mils. The fuel tubes were 44 inches long and the outside diameter of the fuel assembly was 2.5 inches. Orifices at both ends distributed the coolant flow through the channels within the assembly and provided some of the static pressure required on the fuel assemblies to prevent boiling at the hot spots. [6]
The AEC allocated to Westinghouse for use in the operation of the facility 156 kilograms of uranium-235 contained in highly enriched uranium (HEU) enriched to approximately 93% in the isotope uranium-235.
Westinghouse applied for a Construction Permit from the AEC on February 29, 1956. Construction Permit No. CPRR-8 (henceforth designated CPTR-l) was Issued by the AEC on July 3, 1957. The AEC issued Facility License Number TR-2 on June 19, 1959. [4] [11]
TR-2 reached criticality for the first time in July 1959. [2] The primary use of the reactor was to test metallic and non-metallic materials for suitability and performance in a high neutron nuclear environment, as well as to test the performance of new fuel designs, for many commercial, academic, and government customers. [12] [13]
The reactor experienced an accident resulting in fuel damage in 1960. After a restart following the 1960 accident, the reactor was retired in 1962 due to low customer demand. [2] [6] On March 25, 1963, the facility license was amended to allow only possession of special nuclear material but not reactor operation. [11]
The minimally radioactive reactor vessel was shipped from the site on May 15, 2000 for dismantling and ultimate disposal. [2] Westinghouse removed the TR-2 vapor shell in the spring of 2012. [1]
A partial core meltdown occurred at the reactor on the evening of Sunday, April 3, 1960. One fuel element melted, releasing the radioactive gaseous fission products krypton and xenon. [2] The overheating and subsequent damage to the fuel element is reported to have caused by a local lack of sufficient coolant flow. [14] The accident was rated a 4 on the International Nuclear Event Scale, an Accident with local consequences. [15] [16]
The first notification to the AEC of the accident was provided by a telephone call from Westinghouse to the AEC New York Operations Office. In a follow-up letter report, Westinghouse stated, "High activity in the primary coolant and high radiation levels on the site caused shutdown of the WTR and evacuation of the site at approximately 8:50 p.m. on April 3, 1960. Indications are that the high levels were caused by fuel element failure." [17]
A planned reduced coolant flow experiment was in progress at the time of the accident; a five-week long shutdown for reactor modifications was planned to start at 12:01 a.m. the following day. Around 7:55 p.m. Eastern Time, the reactor coolant flow was reduced gradually to 5,250 gpm with the reactor operating at 30 megawatts. In the 8:00 p.m. hour, reactor power was raised to 37 megawatts, and operators commanded an increase in power to 40 megawatts. At 8:35 p.m., reactor power rapidly dropped to 17 megawatts, even as control rods were automatically withdrawing from the core. After reaching 17 megawatts, reactor power dramatically increased to 38 megawatts. At 8:40 p.m., the first of numerous radiation monitors throughout the facility began alarming on high radiation readings. The reactor was manually scrammed four minutes later at 8:44 p.m. [17]
Immediately after the reactor was tripped, facility workers were ordered to evacuate to a nearby guardhouse, then a Westinghouse-owned guest house approximately 1/3 of a mile southeast of the reactor, as radiation levels continued to rise. Three radiation monitoring teams with air monitors and Geiger counters departed the facility to monitor the surrounding environment. At the time of the accident, winds were blowing at 3 mph to 5 mph out of the northeast, drizzling rain was in progress, and the sun had long set. [18] The radiation levels observed at the main road directly in front of the site were over 20 millirem/hour (for comparison, a typical medical X-ray procedure is 10 to 100 millirem [19] ). No contamination of the environment was identified by the surveys the night of April 3. Radiation levels inside and outside the reactor facility decreased over the following hours; personnel made their first re-entries into the facility in the early morning hours of Monday, April 4, 1960. [17]
The AEC opened an investigation into the accident once the extent of damage became known. Members of the AEC staff held a meeting with Westinghouse at the Waltz Mill site on April 22, 1960. In an April 27 memo, [20] AEC Inspection Specialist V. A. Walker was highly critical of Westinghouse and the reactor management and staff. Walker specifically criticized the lack of candor by Westinghouse personnel during the investigation meeting. He also found that the written test instructions and reactor operating procedures were not detailed in regard to actions to take if abnormal conditions were encountered during the test, such as the unexpected reactor power drop experienced. Walker concluded his memo with the summary, "In general, I think the WTR is not well-managed and that the aggressiveness they have exhibited in developing reactor technology has been misdirected. The latter condition can be attributed in part to the tests that have been performed elsewhere."
On May 27, 1960, the AEC issued the thirteen page report CF-169 regarding the accident. The report provides a detailed account of the events of the accident. Notably, the report concludes that all of the radiation values recorded by the Westinghouse staff immediately following the accident, including an observation of 200 millirem/hour at the plant gate around 9:00 p.m., was direct gamma radiation from the elevated head tank, which contained released fission products. The dose rate at two meters from the head tank piping radiation monitor (the monitor was at ground level, well below the elevated head tank) was 5000 millirem/hour. Radioactive fission product gasses Xenon-133-135, Argon-41, and Krypton-85 were released through the 250 feet tall exhaust stack which served the facility. This report reiterated no contamination was found outside of the facility structures and equipment. The report did not provide a definitive cause for the accident while noting local low flow perturbations of the coolant past the fuel element, debris blocking flow past the fuel element, and a number of fuel element manufacturing defects (e.g. aluminum cladding to uranium bonding) were viewed as the most likely causes by the Westinghouse investigating team. [16] The final Westinghouse report issued July 7, 1960 concluded that the immediate cause of the accident could not be conclusively determined, but that a pre-existing defect in the subject fuel element was the most likely cause. [5]
Subsequent reports and correspondence discussed the impact of the accident on future reactor containment design considerations. TR-2 was constructed with a vapor shell or containment to prevent fission products from escaping to the environment during an accident. However, the design and operation of the ventilation system serving various process water tanks allowed fission gasses to escape to the environment, circumventing the containment barrier via plant components, what is known as a "containment bypass" event. [8]
One fuel element melted into two pieces with several inches completely missing compared to the pre-accident height. By April 18, 1960 the upper portion of the melted fuel element had been removed from the reactor, the lower portion of the fuel assembly and debris remained. [21] The melted fuel assembly was sawed out of the reactor vessel from April 21 to April 25. Circulation of the reactor coolant loops during and after the accident distributed core debris throughout the system and required much manual labor to remove the debris, in addition to the use of filters and ion exchangers. [22] [5]
TR-2 remained shut down for eight months to clean-up the facility and repair and refuel the reactor. Labor for the cleanup largely consisted of Westinghouse employees and local unemployed coal miners. Cleanup was performed while wearing common industrial protective equipment using household cleaning and sanitary products. No injuries or illnesses resulted from the accident or cleanup. [2]
Two million gallons of contaminated water were generated during the accident and cleanup. Contaminated water was pumped from the reactor to three lined retention basins/lagoons via a pipeline. [10] Leaks developed in the lagoons, a condition which eventually led to detectable 90Sr in groundwater plus contaminated soil.
The accident and cleanup did not generate much public reaction or media coverage at the time. The in-state Philadelphia Inquirer carried only a two paragraph bulletin from United Press International. [23] [22]
The former facilities were removed and legacy contamination from the routine operations of the reactor and the 1960 accident were remediated to the satisfaction of the Pennsylvania Bureau of Radiation Protection by July 2013. [1]
The Nuclear Regulatory Commission terminated the facility operating license for the TR-2 facility on September 19, 2008; [24] TR-2 was included in NRC Docket 050-00022 and NRC Docket 070-00698.
Westinghouse Report WTR-49, Report on WTR Fuel Element Failure of April 3, 1960.
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.
The Three Mile Island accident was a partial meltdown of the Three Mile Island, Unit 2 (TMI-2) reactor on the Susquehanna River in Londonderry Township, Pennsylvania, near the Pennsylvania capital of Harrisburg. It began at 4 a.m. on March 28, 1979, and released radioactive gases and radioactive iodine into the environment. It is the worst accident in U.S. commercial nuclear power plant history. On the seven-point International Nuclear Event Scale, it is rated Level 5 – Accident with Wider Consequences.
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.
The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.
A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.
A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of 2022, the International Atomic Energy Agency reported there were 422 nuclear power reactors in operation in 32 countries around the world, and 57 nuclear power reactors under construction.
The Army Nuclear Power Program (ANPP) was a program of the United States Army to develop small pressurized water and boiling water nuclear power reactors to generate electrical and space-heating energy primarily at remote, relatively inaccessible sites. The ANPP had several accomplishments, but ultimately it was considered to be "a solution in search of a problem." The U.S. Army Engineer Reactors Group managed this program and it was headquartered at Fort Belvoir, Virginia. The program began in 1954 and had effectively terminated by about 1977, with the last class of NPP operators graduating in 1977. Work continued for some time thereafter either for decommissioning of the plants or placing them into SAFSTOR. The current development of small modular reactors has led to a renewed interest in military applications.
Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.
A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.
The Saxton Nuclear Experiment Station, also known as the Saxton Nuclear Generating Station or Saxton Nuclear Experimental Corporation Facility, was a small nuclear power plant located in Bedford County, near Saxton, Pennsylvania.
This page describes how uranium dioxide nuclear fuel behaves during both normal nuclear reactor operation and under reactor accident conditions, such as overheating. Work in this area is often very expensive to conduct, and so has often been performed on a collaborative basis between groups of countries, usually under the aegis of the Organisation for Economic Co-operation and Development's Committee on the Safety of Nuclear Installations (CSNI).
Carolinas–Virginia Tube Reactor (CVTR), also known as Parr Nuclear Station, was an experimental pressurized tube heavy water nuclear power reactor at Parr, South Carolina in Fairfield County. It was built and operated by the Carolinas Virginia Nuclear Power Associates. CVTR was a small test reactor, capable of generating 17 megawatts of electricity. It was officially commissioned in December 1963 and left service in January 1967.
The Tokaimura nuclear accidents refer to two nuclear related incidents near the village of Tōkai, Ibaraki Prefecture, Japan. The first accident occurred on 11 March 1997, producing an explosion after an experimental batch of solidified nuclear waste caught fire at the Power Reactor and Nuclear Fuel Development Corporation (PNC) radioactive waste bituminisation facility. Over twenty people were exposed to radiation.
The MIT Nuclear Research Reactor (MITR) serves the research purposes of the Massachusetts Institute of Technology. It is a tank-type 6 megawatt reactor that is moderated and cooled by light water and uses heavy water as a reflector. It is the second largest university-based research reactor in the U.S. and has been in operation since 1958. It is the fourth-oldest operating reactor in the country.
The Materials Testing Reactor (MTR) was an early nuclear reactor specifically designed to facilitate the conception and design of future reactors. It produced much of the foundational irradiation data that underlies the nuclear power industry. It operated in Idaho at the National Reactor Testing Station from 1952 to 1970.
ETRR-1 or ET-RR-1, is the first nuclear reactor in Egypt supplied by the USSR in 1958. The reactor is owned and operated by Egyptian Atomic Energy Authority (AEA) at the Nuclear Research Center in Inshas, 40–60 kilometres (25–37 mi) northeast of Cairo.
The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.
A nuclear microreactor is a plug-and-play type of nuclear reactor which can be easily assembled and transported by road, rail or air. Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, and when compared with small modular reactors (SMRs), their capacity is between 1 and 20 megawatts whereas SMRs comes in the range from 20 to 300 megawatts. Due to their size, they can be deployed to locations such as isolated military bases or communities affected by natural disasters. It can operate as part of the grid, independent of the grid, or as part of a small grid for electricity generation and heat treatment. They are designed to provide resilient, non-carbon emitting, and independent power in challenging environments. The nuclear fuel source for the majority of the designs is "High-Assay Low-Enriched Uranium", or HALEU.