Whendee Silver

Last updated
Whendee Silver
Alma materPh.D. Yale University

M.F. Yale School of Forestry & Environmental Studies

B.I.S. Environmental Studies School for International Training

Contents

AwardsFellow, Ecological Society of America

Innovation Award, American Carbon Registry

Aldo Leopold Leadership Fellow
Scientific career
Fieldsecosystem ecology, biogeochemistry
Website https://nature.berkeley.edu/silverlab/

Whendee Silver is an American ecosystem ecologist and biogeochemist. [1] [2]

Early life and education

Silver grew up in Southern California. [3] She earned her MS in Forest Science from Yale School of Forestry in 1987 [4] and in 1992, received her PhD from Yale University. [4] [2]

Career and research

Silver is a distinguished professor of ecosystem ecology at University of California, Berkeley. [5] [2] With a focus on ecosystem ecology and biogeochemistry, her research is often aimed at better understanding the soil system to mitigate the effects of climate change. [2] A significant portion of her work has focused on tropical ecosystems, their soils, plants, [6] and how nutrients and carbon cycle through them.

Silver is the lead scientist at the Marin Carbon Project, which she helped found in 2008. The Marin Carbon Project uses science to improve land management, to think about the whole system and thus consider and value ecosystem services such as soil's C sequestration ability, and make farm and ranch management more centered around carbon sequestration. Through this project she is working with ranchers, using compost for carbon sequestration on ranch land in California, greatly improving the soil's ability to sequester carbon. [7] [8] [5] [9]

Awards and honors

Publications

Silver's research on the biogeochemistry of tropical plants has been published in multiple academic journals. [16] [17] [18] [19] Silver's research was featured in the book Physiological Ecology of Tropical Plants by Ulrich Lüttge. [20] Silver has over 145 publications as of 2018.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Carbon sink</span> Reservoir absorbing more carbon from, than emitting to, the air

A carbon sink is a natural or artificial process that "removes a greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overarching term is carbon pool, which is all the places where carbon on Earth can be, i.e. the atmosphere, oceans, soil, plants, and so forth. A carbon sink is a type of carbon pool that has the capability to take up more carbon from the atmosphere than it releases.

<span class="mw-page-title-main">Grassland</span> Area with vegetation dominated by grasses

A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.

<span class="mw-page-title-main">Afforestation</span> Establishment of trees where there were none previously

Afforestation is the establishment of a forest or stand of trees (forestation) in an area where there was no recent tree cover. In comparison, reforestation means re-establishing forest that have either been cut down or lost due to natural causes, such as fire, storm, etc. There are three types of afforestation: Natural regeneration, agroforestry and tree plantations. Afforestation has many benefits. In the context of climate change, afforestation can be helpful for climate change mitigation through the route of carbon sequestration. Afforestation can also improve the local climate through increased rainfall and by being a barrier against high winds. The additional trees can also prevent or reduce topsoil erosion, floods and landslides. Finally, additional trees can be a habitat for wildlife, and provide employment and wood products.

<span class="mw-page-title-main">Carbon sequestration</span> Storing carbon in a carbon pool (natural as well as enhanced or artificial processes)

Carbon sequestration is the process of storing carbon in a carbon pool. It plays a crucial role in limiting climate change by reducing the amount of carbon dioxide in the atmosphere. There are two main types of carbon sequestration: biologic and geologic.

<span class="mw-page-title-main">Boreal ecosystem</span> Subarctic terrestrial ecozone

A boreal ecosystem is an ecosystem with a subarctic climate located in the Northern Hemisphere, approximately between 50° and 70°N latitude. These ecosystems are commonly known as taiga and are located in parts of North America, Europe, and Asia. The ecosystems that lie immediately to the south of boreal zones are often called hemiboreal. There are a variety of processes and species that occur in these areas as well.

<span class="mw-page-title-main">Human impact on the nitrogen cycle</span>

Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Soil carbon</span> Solid carbon stored in global soils

Soil carbon is the solid carbon stored in global soils. This includes both soil organic matter and inorganic carbon as carbonate minerals. It is vital to the soil capacity in our ecosystem. Soil carbon is a carbon sink in regard to the global carbon cycle, playing a role in biogeochemistry, climate change mitigation, and constructing global climate models. Natural variation such as organisms and time has affected the management of carbon in the soils. The major influence has been that of human activities which has caused a massive loss of soil organic carbon. An example of human activity includes fire which destroys the top layer of the soil and the soil therefore get exposed to excessive oxidation.

<span class="mw-page-title-main">Plant litter</span> Dead plant material that has fallen to the ground

Plant litter is dead plant material that have fallen to the ground. This detritus or dead organic material and its constituent nutrients are added to the top layer of soil, commonly known as the litter layer or O horizon. Litter is an important factor in ecosystem dynamics, as it is indicative of ecological productivity and may be useful in predicting regional nutrient cycling and soil fertility.

<span class="mw-page-title-main">Blue carbon</span> Carbon stored in coastal and marine ecosystems

Blue carbon is a concept within climate change mitigation that refers to "biologically driven carbon fluxes and storage in marine systems that are amenable to management". Most commonly, it refers to the role that tidal marshes, mangroves and seagrasses can play in carbon sequestration. These ecosystems can play an important role for climate change mitigation and ecosystem-based adaptation. However, when blue carbon ecosystems are degraded or lost, they release carbon back to the atmosphere, thereby adding to greenhouse gas emissions.

<span class="mw-page-title-main">Peatland</span> Wetland terrain without forest cover, dominated by living, peat-forming plants

A peatland is a type of wetland whose soils consist of organic matter from decaying plants, forming layers of peat. Peatlands arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. Like coral reefs, peatlands are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.

<span class="mw-page-title-main">Regenerative agriculture</span> Conservation and rehabilitation approach to food and farming systems

Regenerative agriculture is a conservation and rehabilitation approach to food and farming systems. It focuses on topsoil regeneration, increasing biodiversity, improving the water cycle, enhancing ecosystem services, supporting biosequestration, increasing resilience to climate change, and strengthening the health and vitality of farm soil.

<span class="mw-page-title-main">Deforestation and climate change</span> Relationship between deforestation and global warming

Deforestation is a primary contributor to climate change, and climate change affects the health of forests. Land use change, especially in the form of deforestation, is the second largest source of carbon dioxide emissions from human activities, after the burning of fossil fuels. Greenhouse gases are emitted from deforestation during the burning of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions. As of 2019, deforestation is responsible for about 11% of global greenhouse gas emissions. Carbon emissions from tropical deforestation are accelerating.

<span class="mw-page-title-main">Woody plant encroachment</span> Vegetation cover change

Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It predominantly occurs in grasslands, savannas and woodlands and can cause regime shifts from open grasslands and savannas to closed woodlands. The term bush encroachment refers to the expansion of native plants and not the spread of alien invasive species. It is thus defined by plant density, not species. Woody encroachment is often considered interpreted as a symptom of land degradation. The phenomenon is observed across different ecosystems and with different characteristics and intensities globally.

<span class="mw-page-title-main">Carbon farming</span> Agricultural methods that capture carbon

Carbon farming is a set of agricultural methods that aim to store carbon in the soil, crop roots, wood and leaves. The technical term for this is carbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere. This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase the soil's organic matter content. This can also aid plant growth, improve soil water retention capacity and reduce fertilizer use. Sustainable forest management is another tool that is used in carbon farming. Carbon farming is one component of climate-smart agriculture. It is also one way to remove carbon dioxide from the atmisphere.

Wendy Yang is an associate professor of Plant Biology and Geology at the University of Illinois Urbana-Champaign where she works on soil biogeochemistry and ecosystem ecology.

Pamela H. Templer is an ecosystem ecologist and professor at Boston University who focuses on plant-microbial interaction and their effect on carbon exchange and nutrient cycling. She is also interested in examining how urban ecosystems function, how human actions influence nutrient cycling, atmosphere-biosphere interactions, and other ecosystem processes.

<span class="mw-page-title-main">Erika Marín-Spiotta</span> Biogeochemist and ecosystem ecologist.

Erika Marín-Spiotta is a biogeochemist and ecosystem ecologist. She is currently Professor of Geography at the University of Wisconsin-Madison. She is best-known for her research of the terrestrial carbon cycle and is an advocate for underrepresented groups in the sciences, specifically women.

<span class="mw-page-title-main">Tana Wood</span> US biogeochemist and ecosystem scientist

Tana Elaine Wood is a biogeochemist and ecosystem scientist with a focus in land-use and climate change. Her research is focused on looking into how these issues affect tropical forested ecosystems and particularly focuses on soil science and below ground research efforts.

Ingrid C. "Indy" Burke is the Carl W. Knobloch, Jr. Dean at the Yale School of Forestry & Environmental Studies. She is the first female dean in the school's 116 year history. Her area of research is ecosystem ecology with a primary focus on carbon cycling and nitrogen cycling in semi-arid rangeland ecosystems. She teaches on subjects relating to ecosystem ecology, and biogeochemistry.

Jennifer Pett-Ridge is an American biologist who is a senior staff scientist at the Lawrence Livermore National Laboratory. She also serves as an adjunct professor at the University of California, Merced. Her research makes use of systems biology and geochemistry to uncover function in microbial communities. She was awarded a 2021 United States Department of Energy Ernest Orlando Lawrence Award.

References

  1. Pilot, Otto (2015-02-13). "Down and Dirty". Climate One. Retrieved 2018-11-13.
  2. 1 2 3 4 Grasslands, Compost and Climate Change Mitigation: a Conversation with Whendee Silver , retrieved 2018-11-13
  3. Pilot, Otto (2015-02-13). "Down and Dirty". Climate One. Retrieved 2018-11-08.
  4. 1 2 "Managing Soil for Resilient Farmland". Lexicon of Food. 2015-06-04. Retrieved 2018-11-08.
  5. 1 2 Velasquez-Manoff, Moises (18 April 2018). "Can Dirt Save the Earth?". The New York Times. Retrieved 2018-11-08.
  6. Lüttge, Ulrich (2007-12-14). Physiological Ecology of Tropical Plants. Vol. 44. Springer Science & Business Media. pp. 301–328. doi:10.1007/bf00996995. ISBN   9783540717935. S2CID   94545902.{{cite book}}: |journal= ignored (help)
  7. "To the rescue: Berkeley names Faculty Climate Action Champion". Berkeley News. 2015-09-29. Retrieved 2018-11-08.
  8. Velasquez-Manoff, Moises (18 April 2018). "Can Dirt Save the Earth?". The New York Times. Retrieved 2018-11-08.
  9. "Just add compost: How to turn your grassland ranch into a carbon sink". Grist. 2014-01-16. Retrieved 2018-11-08.
  10. "Bohannan selected as Leopold Leadership Fellow | Environmental Studies Program". envs.uoregon.edu. Retrieved 2018-11-08.
  11. "Google Announces 21 Ph.D. Scientists As 'Science Communication Fellows' » Yale Climate Connections". Yale Climate Connections. 2011-02-16. Retrieved 2018-11-08.
  12. "From Garbage to Gold: Managing California's Grasslands for Climate Change Mitigation — UC Center Sacramento". uccs.ucdavis.edu. Retrieved 2018-11-08.
  13. "To the rescue: Berkeley names Faculty Climate Action Champion". Berkeley News. 2015-09-29. Retrieved 2018-11-08.
  14. "From Garbage to Gold: Managing California's Grasslands for Climate Change Mitigation — UC Center Sacramento". uccs.ucdavis.edu. Retrieved 2018-11-08.
  15. "2021 Class of AGU Fellows Announced". Eos. 28 September 2021. Retrieved 2021-09-29.
  16. Silver, Whendee L.; Lugo, A. E.; Keller, M. (March 1999). "Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils". Biogeochemistry. 44 (3): 301–328. doi:10.1007/bf00996995. ISSN   0168-2563. S2CID   94545902.
  17. Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M. C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E. (2011-07-12). "Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis". Ecology Letters. 14 (9): 939–947. doi:10.1111/j.1461-0248.2011.01658.x. ISSN   1461-023X. PMID   21749602.
  18. Silver, Whendee L.; Thompson, Andrew W.; McGroddy, Megan E.; Varner, Ruth K.; Dias, Jadson D.; Silva, Hudson; Crill, Patrick M.; Keller, Michael (February 2005). "Fine root dynamics and trace gas fluxes in two lowland tropical forest soils". Global Change Biology. 11 (2): 290–306. Bibcode:2005GCBio..11..290S. doi:10.1111/j.1365-2486.2005.00903.x. ISSN   1354-1013. S2CID   85253188.
  19. CUSACK, DANIELA F.; CHOU, WENDY W.; YANG, WENDY H.; HARMON, MARK E.; SILVER, WHENDEE L. (May 2009). "Controls on long-term root and leaf litter decomposition in neotropical forests". Global Change Biology. 15 (5): 1339–1355. Bibcode:2009GCBio..15.1339C. doi:10.1111/j.1365-2486.2008.01781.x. ISSN   1354-1013. S2CID   39890498.
  20. Lüttge, Ulrich (2007-12-14). Physiological Ecology of Tropical Plants. Springer Science & Business Media. ISBN   9783540717935.
  21. Mayer, Allegra; Hausfather, Zeke; Jones, Andrew D.; Silver, Whendee L. (2018-08-01). "The potential of agricultural land management to contribute to lower global surface temperatures". Science Advances. 4 (8): eaaq0932. Bibcode:2018SciA....4..932M. doi:10.1126/sciadv.aaq0932. ISSN   2375-2548. PMC   6114992 . PMID   30167456.
  22. O’Connell, Christine S.; Ruan, Leilei; Silver, Whendee L. (2018-04-09). "Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions". Nature Communications. 9 (1): 1348. Bibcode:2018NatCo...9.1348O. doi:10.1038/s41467-018-03352-3. ISSN   2041-1723. PMC   5890268 . PMID   29632326.
  23. Yang, Wendy; Ryals, Rebecca A.; Cusack, Daniela F.; Silver, Whendee L. (2017-04-01). "Cross-biome assessment of gross soil nitrogen cycling in California ecosystems". Soil Biology and Biochemistry. 107: 144–155. doi: 10.1016/j.soilbio.2017.01.004 . ISSN   0038-0717.
  24. "2016. Effects of seasonality, transport-pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. - AmeriFlux". AmeriFlux. Retrieved 2018-11-10.
  25. Ryals, Rebecca; Eviner, Valerie T.; Stein, Claudia; Suding, Katharine N.; Silver, Whendee L. (March 2016). "Grassland compost amendments increase plant production without changing plant communities". Ecosphere. 7 (3): e01270. doi: 10.1002/ecs2.1270 . ISSN   2150-8925.
  26. Hall, Steven J.; Treffkorn, Jonathan; Silver, Whendee L. (2014). "Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils". Ecology. 95 (10): 2964–2973. doi:10.1890/13-2151.1. JSTOR   43493922.
  27. Liptzin, Daniel; Silver, Whendee L. (November 2015). "Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils". Ecosphere. 6 (11): art211. doi: 10.1890/es14-00309.1 . ISSN   2150-8925.
  28. Silver, Whendee L.; Hall, Steven J.; González, Grizelle (November 2014). "Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest". Forest Ecology and Management. 332: 47–55. doi:10.1016/j.foreco.2014.05.018. ISSN   0378-1127.