Whipper is a budgerigar from Winton, Southland District, New Zealand. [1] His unusual appearance, long curly plumage, and vocalisations, which were caused by a genetic mutation called "feather duster" a very rare mutation, made him famous in his home country.
After being placed with and rejected by his mother, his owner took personal care of Whipper. This early separation from his own species may have resulted in his unique vocal sounds, and later reintroduction to other budgerigars caused normal calls to be more evident. [2]
Whipper's vet declared him as a mutant. [3] Bird mutations are well documented and can cause health problems. [4]
Genetic colour variation is common within the species. However, Whipper's unique mutation is long curly feathers, short flightless wings and apparent blindness. [3] It is suspected that the mutation, which is known to budgerigar breeders as the "feather duster budgerigar" mutation, caused unrestricted feather growth, resulting in the budgerigar's dishevelled appearance.
The budgerigar, also known as the common parakeet, shell parakeet or budgie, is a small, long-tailed, seed-eating parrot. Naturally, the species is green and yellow with black, scalloped markings on the nape, back, and wings. Budgies are bred in captivity with colouring of blues, whites, yellows, greys, and even with small crests. Juveniles and chicks are monomorphic, while adults are told apart by their cere colouring, and their behaviour.
The cockatiel, also known as the weero/weiro or quarrion, is a medium-sized parrot that is a member of its own branch of the cockatoo family endemic to Australia. They are prized as household exotic bird pets and companion parrots throughout the world and are relatively easy to breed compared to other parrots. As a caged bird, cockatiels are second in popularity only to the budgerigar.
Plumage is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspecies and may vary with age classes. Within species, there can be different colour morphs. The placement of feathers on a bird is not haphazard but rather emerges in organized, overlapping rows and groups, and these feather tracts are known by standardized names.
The science of budgerigar color genetics deals with the heredity of mutations which cause color variation in the feathers of the species known scientifically as Melopsittacus undulatus. Birds of this species are commonly known by the terms 'budgerigar', or informally just 'budgie'.
The science of cockatiel colour genetics deals with the heredity of colour variation in the feathers of cockatiels, Nymphicus hollandicus. Colour mutations are a natural but very rare phenomenon that occur in either captivity or the wild. About fifteen primary colour mutations have been established in the species which enable the production of many different combinations. Note that this article is heavily based on the captive or companion cockatiel rather than the wild cockatiel species.
The Blue budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is part of the genetic constitution of the following recognised varieties: Skyblue, Cobalt, Mauve and Violet.
The Yellowface II budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. In combination with the Blue, Opaline and Clearwing mutations, the single factor Yellowface II mutation produces the variety called Rainbow.
The violet budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is one of the constituent mutations of the violet variety.
The Clearwing budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is the underlying mutation of the Clearwing variety, often known as Yellowwings in the green series and Whitewings in the blue series. When combined with the Greywing mutation the variety is known as the Full-bodied Greywing. When combined with the Yellowface II and Opaline mutations the Rainbow variety is produced.
The Opaline budgerigar mutation is one of approximately 30 mutations affecting the colour or appearance of budgerigars. It is the underlying mutation of the Opaline variety. When combined with the Yellowface II and Clearwing mutations the Rainbow variety is produced.
The Ino budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is the underlying mutation of the Albino and Lutino varieties and, with Cinnamon, a constituent mutation of the Lacewing variety.
The Sex-linked (SL) Clearbody budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is the underlying mutation of the Texas Clearbody variety.
The German Fallow budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. At least three types of Fallow, the German, English, and Scottish, all named after their country of origin, have been established, although none of these types is common. They are superficially similar, but adult birds may be distinguished by examining the eye. All have red eyes, but the German Fallow shows the usual white iris ring, the eye of the English Fallow is a solid red with a barely discernible iris and the iris of the Scottish Fallow is pink.
The English Fallow budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. At least three types of Fallow, the German, English and Scottish, all named after their country of origin, have been established, although none of these types is common. They are superficially similar, but adult birds may be distinguished by examining the eye. All have red eyes, but the German Fallow shows the usual white iris ring, the eye of the English Fallow is a solid red with a barely discernible iris and the iris of the Scottish Fallow is pink.
The Scottish Fallow budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. At least three types of Fallow, the German, English and Scottish, all named after their country of origin, have been established, although none of these types is common. They are superficially similar, but adult birds may be distinguished by examining the eye. All have red eyes, but the German Fallow shows the usual white iris ring, the eye of the English Fallow is a solid red with a barely discernible iris and the iris of the Scottish Fallow is pink.
The English Grey budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It appeared briefly in the 1930s but was lost shortly after and until recently was believed to be no longer extant. However, the appearance of the anthracite budgerigar mutation in 1998 with a seemingly identical appearance and identical genetic behaviour, insofar as can now be determined, suggests the mutation may have been regained.
The Anthracite budgerigar mutation is an extremely rare mutation that occurs in the budgerigar. The mutation, similar to the Violet budgerigar mutation, causes a difference in the coloring of budgerigars. Anthracites have black or very dark gray feathers, possibly with some white depending on the budgerigar in particular. The mutation is believed to have started in Germany, and tends to be local to that area. Currently, most owners wishing to obtain an Anthracite need to import these budgerigars from Germany.
The Clearflight Pied budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is the underlying mutation of the Continental Clearflight and Dutch Pied varieties. The Dark-eyed Clear variety results when the Recessive Pied and Clearflight Pied characters are combined.
The Australian Pied budgerigar mutation is one of approximately 30 mutations affecting the colour of budgerigars. It is the underlying mutation of the Banded Pied variety.
Feather duster budgerigars, sometimes called budgerigar mops, are budgerigars that have a condition characterised by overly long feathers that do not stop growing at usual periods, giving the bird the appearance of a feather duster. This condition is sometimes known as chrysanthemum feathering. The contour, tail and flight feathers do not stop growing, and they do not have the necessary barbs and barbules for the feather's structure to interlock. The shaft (calamus) is also curved, and so the feathers appear deformed and fluffed out. Individuals with this condition often appear less alert than nest mates. In addition, they are small and some have other defects such as microphthalmia. They lack vigour, often cannot fly and die within a year of hatching. There is no treatment for the condition; birds are often euthanized in the nest.